DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

DIGITAL NOTES
ON

NATURAL LANGUAGE PROCESSING
B.TECH IV YEAR- ISEM
(R22A6603)
(2025-26)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to INTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad — 500100, Telangana State, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Vision
To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students into competent
and confident engineers.

Evolving the center of excellence through creative and innovative teaching learning
practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO:s)

PEO1-ANALYTICALSKILLS

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze, solve
complex problems, and make decisions. These are essential to address the challenges of complex and
computation intensive problems increasing their productivity.

PEO2-TECHNICALSKILLS

To facilitate the graduates with thetechnicalskillsthatpreparethemforimmediateemploymentandpurs ue
certification providing a deeper understanding of the technology in advanced areas of computer science and
related fields, thus encouraging pursuing higher education and research based on their interest.

PEO3-SOFTSKILLS

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals, showing
self confidence by communicating effectively, having a positive attitude, get involved in team-work,
being a leader, managing their career and their life.

PEO4-PROFESSIONALETHICS

To facilitate the graduates with the knowledge of professional and ethical responsibilities by paying
attention to grooming, being conservative with style, following dress codes, safety codes, and

adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates will
have the following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to Understand the working

principles of the computer System and its components, Apply the knowledge to build, asses,
and analyze the software and hardware aspects of it.

2. The comprehensive and Applicative knowledge of Software Development: Comprehensive skills of
Programming Languages, Software process models, methodologies, and able to plan, develop, test,
analyze, and manage the software and hardware intensive systems in heterogeneous platforms

individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional, managerial,
interdisciplinary skill set, and domain specific tools in development processes, identify the research

gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

A B.Tech -computer Science and Engineering graduate should possess the following Program
outcomes.

PO1- Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of complex
engineering problems.

PO2- Problem analysis: ldentify, formulate, review research literature, and
analyze complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO3- Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified
needs with appropriate consideration for the public health and safety, and the
cultural, societal, and environmental considerations.

PO4- Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5- Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6- The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO7- Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8- Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

PO9- Individual and team work: Function effectively as an individual, and as a member
or leader in diverse teams, and in multidisciplinary settings.

PO10- Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

PO11- Project management and finance: Demonstrate knowledge and
understanding of the engineering and management principles and apply these to
one’s own work, as a member and leader in a team, to manage projects and in
multidisciplinary environments.

PO12- Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context of
technological change.

MRCET CAMPUS AUTONOMOUS INSTITUTION-UGC, GOVT.OF INDIA

B.Tech IV Year | Sem-CSE L/T/P/C3/-/-/3

(R22A6603) NATURAL LANGUAGE PROCESSING

COURSE OBJECTIVES:
1. Introduce to some of the problems and solutions of NLP and their relation to
linguistics and statistics.
2. To understand linguistic phenomena and learn to model them with formal grammars.
3. To understand and carry out proper experimental methodology for training and
evaluating empirical NLP systems.
4. To learn how to manipulate probabilities, construct statistical models over string sand trees
5. To estimate parameters using supervised and unsupervised training methods.
6. To design, implement, and analyze NLP algorithms. Able to design different
language modeling Techniques.

UNIT -I:

Natural Language processing (NLP) : Introduction, Applications or Use cases of NLP,
Components of NLP, Steps in NLP, Finding the Structure of Words: Words and Their
Components, Lexemes, Morphemes, Morphology, Problems in morphological processing,
Typology, Morphological Typology, Natural Language Processing with python NLTK
package (Text Preprocessing Tasks): Word Tokenization, Sentence Tokenization, Filtering
Stop words, Stemming, Tagging Parts of Speech, Lemmatization, Chunking, Chinking,
Named Entity Recognition.

UNIT-II:

Syntax Analysis: Parsing Natural Language, Tree banks: A Data-Driven Approach to
Syntax, Representation of Syntactic Structure: Syntax Analysis using Dependency Graph,
Syntax Analysis using Phrase Structure Trees, Parsing Algorithms: Shift Reduce Parsing,
Hyper Graphs and Chart Parsing (CYK Parsing), Models for ambiguity Resolution in
Parsing: Probabilistic Context Free Grammar, Generative Models, Discriminative models for
Parsing.

UNIT-III:

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation,
Parameter Estimation, Language Model Adaptation, Types of Language Models, Language-
Specific Modeling Problems.

Word Embedding techniques: Bag of words (BOW), Continuous Bag of Words
(CBOW), Term Frequency and Inverse Document Frequency (TF-IDF).

UNIT-1V:
Semantic Parsing: Introduction, Semantic Interpretation, System Paradigms, Word Sense
Systems, Software.

Word Embedding Techniques for semantic analysis: Word2Vec, Global Vector for
word representation (GloVe),Bidirectionalencoderrepresentationsfrom transformers
(BERT)

UNIT-V:

Predicate-Argument Structure, Meaning Representation Systems, Software. Discourse
Processing: Cohesion, Reference Resolution, Discourse Cohesion and Structure.

TEXT BOOKS:

1. Multilingual natural Language Processing Applications: From Theory to Practice—
DanielM.Bikel and Imed Zitouni, Pearson Publication.

2. Speech and Natural Language Processing-Daniel Jurafsky & James H Martin,
PearsonPublications.

REFERENCE BOOKS:
1. Natural Language Processing and Information Retrieval: Tanvier Siddiqui,
U.S.Tiwary.

COURSEOUTCOMES:
1. Show sensitivity to linguistic phenomena and an ability to model them with formal
grammars.
2. Understand and carry out proper experimental methodology for training and
evaluating empirical NLP systems.
3. Able to manipulate probabilities, construct statistical models over strings and trees
4. Will be able to estimate parameters using supervised and unsupervised training methods.

5. Able to design, implement, and analyze NLP algorithms. Able to design different
language modeling Techniques.

NLP

Natural Language Processing (NLP) Unit-I
Natural Language Processing — Introduction

Humans communicate through some form of language either by text or speech.

To make interactions between computers and humans, computers need to understand
natural languages used by humans.

Natural language processing is all about making computers learn, understand,
analyze, manipulate and interpret natural(human) languages.

NLP stands for Natural Language Processing, which is a part of Computer Science,
Human languages or Linguistics, and Artificial Intelligence.

Processing of Natural Language is required when you want an intelligent system like
robot to perform as per your instructions, when you want to hear decision from a
dialogue based clinical expert system, etc.

The ability of machines to interpret human language is now at the core of many
applications that we use every day - chatbots, Email classification and spam filters,
search engines, grammar checkers, voice assistants, and social language translators.
The input and output of an NLP system can be Speech or Written Text.

Applications of NLP or Use cases of NLLP

1. Sentiment analysis
Sentiment analysis, also referred to as opinion mining, is an approach to natural
language processing (NLP) that identifies the emotional tone behind a body of text.
This is a popular way for organizations to determine and categorize opinions about a
product, service or idea.
Sentiment analysis systems help organizations gather insights into real-time customer
sentiment, customer experience and brand reputation.
Generally, these tools use text analytics to analyze online sources such as emails, blog
posts, online reviews, news articles, survey responses, case studies, web chats, tweets,
forums and comments.
Sentiment analysis uses machine learning models to perform text analysis of human
language. The metrics used are designed to detect whether the overall sentiment of a
piece of text is positive, negative or neutral.

2. Machine Translation

Machine translation, sometimes referred to by the abbreviation MT, is a sub-field
of computational linguistics that investigates the use of software to translate text or
speech from one language to another.

On a basic level, MT performs mechanical substitution of words in one language for
words in another, but that alone rarely produces a good translation because
recognition of whole phrases and their closest counterparts in the target language is
needed.

Not all words in one language have equivalent words in another language, and many
words have more than one meaning.

Page 1

NLP

Solving this problem with corpus statistical and neural techniques is a rapidly growing
field that is leading to better translations, handling differences in linguistic typology,
translation of idioms, and the isolation of anomalies.

Corpus: A collection of written texts, especially the entire works of a particular
author.

3. Text Extraction

There are a number of natural language processing techniques that can be
used to extract information from text or unstructured data.

These techniques can be used to extract information such as entity names,
locations, quantities, and more.

With the help of natural language processing, computers can make sense
of the vast amount of unstructured text data that is generated every day,
and humans can reap the benefits of having this information readily
available.

Industries such as healthcare, finance, and e-commerce are already using
natural language processing techniques to extract information and
improve business processes.

As the machine learning technology continues to develop, we will only
see more and more information extraction use cases covered.

4. Text Classification

Unstructured text is everywhere, such as emails, chat conversations, websites, and
social media. Nevertheless, it’s hard to extract value from this data unless it’s
organized in a certain way.

Text classification also known as fext tagging or text categorization is the process of
categorizing text into organized groups. By using Natural Language
Processing (NLP), text classifiers can automatically analyze text and then assign a set
of pre-defined tags or categories based on its content.

Text classification is becoming an increasingly important part of businesses as it
allows to easily get insights from data and automate business processes.

5. Speech Recognition
Speech recognition is an interdisciplinary subfield of computer
science and computational linguistics that develops methodologies and technologies
that enable the recognition and translation of spoken language into text by computers.
It is also known as automatic speech recognition (ASR), computer speech
recognition or speech to text (STT).
It incorporates knowledge and research in the computer
science, linguistics and computer engineering fields. The reverse process is speech
synthesis.

Page 2

NLP

Speech recognition use cases
A wide number of industries are utilizing different applications of speech technology
today, helping businesses and consumers save time and even lives. Some examples
include:
Automotive: Speech recognizers improves driver safety by enabling voice-activated
navigation systems and search capabilities in car radios.
Technology: Virtual agents are increasingly becoming integrated within our daily
lives, particularly on our mobile devices. We use voice commands to access them
through our smartphones, such as through Google Assistant or Apple’s Siri, for tasks,
such as voice search, or through our speakers, via Amazon’s Alexa or Microsoft’s
Cortana, to play music. They’ll only continue to integrate into the everyday products
that we use, fueling the “Internet of Things” movement.
Healthcare: Doctors and nurses leverage dictation applications to capture and log
patient diagnoses and treatment notes.
Sales: Speech recognition technology has a couple of applications in sales. It can help
a call center transcribe thousands of phone calls between customers and agents to
identify common call patterns and issues. Al chatbots can also talk to people via a
webpage, answering common queries and solving basic requests without needing to
wait for a contact center agent to be available. In both instances speech recognition
systems help reduce time to resolution for consumer issues.

6. Chatbot

Chatbots are computer programs that conduct automatic conversations with people.
They are mainly used in customer service for information acquisition. As the name
implies, these are bots designed with the purpose of chatting and are also simply
referred to as “bots.”

You’ll come across chatbots on business websites or messengers that give pre-scripted
replies to your questions. As the entire process is automated, bots can provide quick
assistance 24/7 without human intervention.

7. Email Filter

One of the most fundamental and essential applications of NLP online is email
filtering. It began with spam filters, which identified specific words or phrases that
indicate a spam message. But, like early NLP adaptations, filtering has been
improved.
Gmail's email categorization is one of the more common, newer implementations of
NLP. Based on the contents of emails, the algorithm determines whether they belong
in one of three categories (main, social, or promotional).
This maintains your inbox manageable for all Gmail users, with critical, relevant
emails you want to see and reply to fast.

8. Search Autocorrect and Autocomplete
When you type 2-3 letters into Google to search for anything, it displays a list of
probable search keywords. Alternatively, if you search for anything with mistakes, it
corrects them for you while still returning relevant results. Isn't it incredible?

Page 3

NLP

* —Lte sin NLP Lexical Analysis
There are general five steps : i)
1. Lexical Analysis Syntactic Analysis
2. Syntactic Analysis (Parsing) v
3. Semantic Analysis Semantic Analysis
4. Discourse Integration Discoursettegraﬁon
5. Pragmatic Analysis 3

Everyone uses Google search autocorrect autocomplete on a regular basis but seldom
gives it any thought. It's a fantastic illustration of how natural language processing is
touching millions of people across the world, including you and me.

Both, search autocomplete and autocorrect make it much easier to locate accurate
results.

Components of NLLP

There are two components of NLP, Natural Language Understanding (NLU)and
Natural Language Generation (NLG).

Natural Language Understanding (NLU) which involves transforming
humanlanguage into a machine-readable format.It helps the machine to understand
and analyze human language by extracting the text from large data such as keywords,
emotions, relations, and semantics.

Natural Language Generation (NLG) acts as a translator that converts
thecomputerized data into natural language representation.

It mainly involves Text planning, Sentence planning, and Text realization.

The NLU is harder than NLG.

Pragmatic Analysis

Lexical Analysis:

The first phase of NLP is the Lexical Analysis.

This phase scans the source code as a stream of characters and converts it into
meaningful lexemes.

» It divides the whole text into paragraphs, sentences, and words.

Lexeme: A lexeme is a basic unit of meaning. In linguistics, the abstract unit of
morphological analysis that corresponds to a set of forms taken by a single word is
called lexeme.

The way in which a lexeme is used in a sentence is determined by its grammatical
category.

Page 4

Lexeme can be individual word or multiword.

For example, the word talk is an example of an individual word lexeme,
which mayhave many grammatical variants like talks, talked and talking.

» Multiword lexeme can be made up of more than one orthographic word. For
example,speak up, pull through, etc. are the examples of multiword lexemes.

Syntax Analysis (Parsing)

e Syntactic Analysis is used to check grammar, word arrangements, and
shows therelationship among the words.

e The sentence such as “The school goes to boy” is rejected by English
syntactic analyzer.

Semantic Analysis
Semantic analysis is concerned with the meaning representation.
It mainly focuses on the literal meaning of words, phrases, and sentences.

The semantic analyzer disregards sentence such as “hot ice-cream”.

YV V V VYV

Another Example is “Manhattan calls out to Dave” passes a syntactic analysis because it’s
a grammatically correct sentence. However, it fails a semantic analysis. Because
Manhattan is a place (and can’t literally call out to people), the sentence’s meaning doesn’t

make sense.

Discourse Integration

e Discourse Integration depends upon the sentences that precedes it and also
invokesthe meaning of the sentences that follow it.

e For instance, if one sentence reads, “Manhattan speaks to all its people,” and the
following sentence reads, “It calls out to Dave,” discourse integration checks the first
sentence for context to understand that “It” in the latter sentence refers to Manhattan.

Pragmatic Analysis
» During this, what was said is re-interpreted on what it actually meant.
» It involves deriving those aspects of language which require real world knowledge.

» For instance, a pragmatic analysis can uncover the intended meaning of “Manhattan
speaks to all its people.” Methods like neural networks assess the context to
understand that the sentence isn’t literal, and most people won’t interpret it as such. A
pragmatic analysis deduces that this sentence is a metaphor for how people
emotionally connect with place.

5. Finding the structure of Words

Words and Their Components

e Words are defined in most languages as the smallest linguistic units that
can form acomplete utterance by themselves.

e The minimal parts of words that deliver aspects of meaning to them are called
morphemes.

.09
NLP Page 5

Tokens:

Suppose, for a moment, that words in English are delimited only by

whitespace and punctuation (the marks, such as full stop, comma, and

brackets)

e Example: Will you read the newspaper? Will you read it? [won’t
read it. If we confront our assumption with insights from syntax,
we notice twowords here: words newspaper and won’t.

NLP Page 6

NLP

Being a compound word, newspaper has an interesting derivational
structure.

In writing, newspaper and the associated concept is distinguished from
the 1solated news and paper.

For reasons of generality, linguists prefer to analyze won’t as two
syntactic words, or tokens, each of which has its independent role and can
be reverted to its normalized form.

The structure of won’t could be parsed as will followed by not.

In English, this kind of tokenization and normalization may apply to just
a limited set of cases, but in other languages, these phenomena have to be
treated different way.

Lexemes

By the term word, we often denote not just the one linguistic form in the given
context but also the concept behind the form and the set of alternative forms that can
express it.

Such sets are called lexemes or lexical items, and they constitute the lexicon of a
language.

Lexemes can be divided by their behaviour into the lexical categories of verbs, nouns,
adjectives, conjunctions or other parts of speech.

The citation form of a lexeme, by which it is commonly identified, is also called its
lemma.

When we convert a word into its other forms, such as turning the singular mouse into
the plural mice or mouses, we say we inflect the lexeme.

When we transform a lexeme into another one that is morphologically related,
regardless of its lexical category, we say we derive the lexeme: for instance, the nouns
receiver and reception are derived from the verb receive.

Example: Did you see him? 1 didn’t see him. [didn’t see anyone
Example presents the problem of tokenization of didn’t and the investigation of the
internal structure of anyone.

The difficulty with the definition of what counts as a word need not pose a problem
for the syntactic description if we understand no one as two closely connected tokens
treated as one fixed element.

Morphemes

These components are usually called segments or morphs.

Morphology

Morphology is the domain of linguistics that analyses the internal structure of words.
Morphological analysis — exploring the structure of words

Words are built up of minimal meaningful elements called morphemes:

played = play-ed

cats = cat-s

unfriendly = un-friend-ly

Page 7

NLP

Two types of morphemes:

i Stems: play, cat, friend

i1 Affixes: -ed, -s, un-, -ly

Two main types of affixes:

1 Prefixes precede the stem: un

i1 Suffixes follow the stem: -ed, -s, un-, -ly

Stemming = find the stem by stripping off affixes

play = play
replayed = re-play-ed
computerized = comput-er-ize-d

Problems in morphological processing

Inflectional morphology: inflected forms are constructed from base forms
and inflectional

Affixes.

Inflection relates different forms of the same word

Lemma Singular Plural

Cat cat Cats

Mouse mouse mice

Derivational morphology: words are constructed from roots (or stems)
and derivational

affixes:

inter+national = international

international+ize = internationalize

internationalize+ation = internationalization

The simplest morphological process concatenates morphs one by one, as in disagree-
ment-s, where agree is a free lexical morpheme and the other elements are bound
grammatical morphemes contributing some partial meaning to the whole word.

In a more complex scheme, morphs can interact with each other, and their forms may
become subject to additional phonological and orthographic changes denoted as
morphophonemic.

The alternative forms of a morpheme are termed allomorphs.

The ending -s, indicating plural in “cats,” “dogs,” the -es in “dishes,” and the -en of
“oxen” are all allomorphs of the plural morpheme.

Typology

Morphological typology divides languages into groups by characterizing the prevalent
morphological phenomena in those languages.

It can consider various criteria, and during the history of linguistics, different
classifications have been proposed.

Let us outline the typology that is based on quantitative relations between words, their
morphemes, and their features:

Page 8

NLP

Isolating, or analytic, languages include no or relatively few words that would
comprise more than one morpheme (typical members are Chinese, Vietnamese, and
Thai; analytic tendencies are also found in English).

Synthetic languages can combine more morphemes in one word and are further
divided into agglutinative and fusional languages.

Agglutinative languages have morphemes associated with only a single function at a
time (as in Korean, Japanese, Finnish, and Tamil, etc.)

Fusional languages are defined by their feature-per-morpheme ratio higher than one
(as in Arabic, Czech, Latin, Sanskrit, German, etc.).

In accordance with the notions about word formation processes mentioned earlier, we
can also find out using concatenative and nonlinear:

Concatenative languages linking morphs and morphemes one after another.

Nonlinear languages allowing structural components to merge nonsequentially to
apply tonal morphemes or change the consonantal or vocalic templates of words.

Morphological Typology

Morphological typology is a way of classifying the languages of the world that groups
languages according to their common morphological structures.

The field organizes languages on the basis of how those languages form words by
combining morphemes.

The morphological typology classifies languages into two broad classes like synthetic
languages and analytical languages.

The synthetic class is then further sub classified as either agglutinative languages or
fusional languages.

Analytic languages contain very little inflection, instead relying on features like word
order and auxiliary words to convey meaning.

Synthetic languages, ones that are not analytic, are divided into two categories:
agglutinative and fusional languages.

Agglutinative languages rely primarily on discrete particles(prefixes, suffixes, and
infixes) for inflection, ex: inter+national = international, international+ize =
internationalize.

While fusional languages "fuse" inflectional categories together, often allowing one
word ending to contain several categories, such that the original root can be difficult
to extract (anybody, newspaper).

. Natural Language Processing With Pvthon's NLTK Package

NLTK, or Natural Language Toolkit, is a Python package that you can use for NLP.

A lot of the data that you could be analyzing is unstructured data and contains human-
readable text.

Before you can analyze that data programmatically, you first need to preprocess it.

Now we are going to see kinds of text preprocessing tasks you can do with NLTK so
that you’ll be ready to apply them in future projects.

Page 9

NLP

1. Tokenizing

e By tokenizing, you can conveniently split up text by word or by sentence.

e This will allow you to work with smaller pieces of text that are still relatively
coherent and meaningful even outside of the context of the rest of the text.

e It’s your first step in turning unstructured data into structured data, which is easier
to analyze.

e When you’re analyzing text, you’ll be tokenizing by word and tokenizing by
sentence.

Tokenizing by word

Words are like the atoms of natural language. They’re the smallest unit of meaning
that still makes sense on its own.

Tokenizing your text by word allows you to identify words that come up particularly
often.

For example, if you were analyzing a group of job ads, then you might find that the
word “Python” comes up often.

That could suggest high demand for Python knowledge, but you’d need to look deeper
to know more.

Tokenizing by sentence

When you tokenize by sentence, you can analyze how those words relate to one
another and see more context.

Are there a lot of negative words around the word “Python” because the hiring
manager doesn’t like Python?

Are there more terms from the domain of herpetology than the domain of software
development, suggesting that you may be dealing with an entirely different kind
of python than you were expecting?

Python Program for Tokenizing by Sentence

from nltk.tokenize import sent _tokenize, word_tokenize

example_string ="""

Muad'Dib learned rapidly because his first training was in how to
learn. And the first lesson of all was the basic trust that he could

learn.It's shocking to find how many people do not believe
they can learn,and how many more believe learning to be
difficult."""

sent_tokenize(example string)
Output

["\n Muad'Dib learned rapidly because his first training was in how to learn.",

Page 10

NLP

'And the first lesson of all was the basic trust that he could learn.’,

"It's shocking to find how many people do not believe they can learn,\n and how
many more believe learning to be difficult."]

Note:
import nltk
nltk.download('punkt’)

Python Program for Tokenizing by Word
from nltk.tokenize import sent tokenize, word tokenize
example_string ="""

Muad'Dib learned rapidly because his first training was in how to learn. And
the first lesson of all was the basic trust that he could learn.It's
shocking to find how many people do not believe they can learn,and
how many more believe learning to be difficult."""

word_tokenize(example_string)
Output:

["Muad'Dib", 'learned’, 'rapidly', 'because', 'his', 'first', 'training', 'was', 'in', 'how', 'to',
'learn’, '.!, 'And', 'the', 'first', 'lesson’, 'of', 'all', 'was', 'the', 'basic', 'trust’, 'that', 'he',
'could', 'learn’, "', 'It', "'s", 'shocking', 'to', 'find', 'how', 'many', 'people', 'do’, 'not',
'believe', 'they', 'can', 'learn', ',', 'and', 'how', 'many’', 'more', 'believe', 'learning’, 'to', 'be’',
'difficult', "."]

'

2. Filtering Stop Words

e Stop words are words that you want to ignore, so you filter them out of your text
when you’re processing it. Very common words like 'in', 'is', and 'an' are often
used as stop words since they don’t add a lot of meaning to a text in and of
themselves.

e Note: nltk.download("stopwords")

Python program to eliminate stopwords
from nltk.corpus import stopwords

from nltk.tokenize import word tokenize

worf quote = "Sir, I protest. [am not a merry man!"
words_in_quote = word_tokenize(worf quote)
print(words_in_quote)

stop_words = set(stopwords.words("english"))

filtered list=]

Page 11

NLP

for word in words_in_quote:
if word.casefold() not in stop_words:
filtered_list.append(word)
print(filtered list)
Output:
['Sir', "', 'T", 'protest’, '.", 'I', 'am', 'not', 'a’, 'merry’, 'man’, '!’]
['Sir', "), 'protest’, "', 'merry', 'man’, '’]
‘I’ is pronoun and it is context word

Content words give you information about the topics covered in the text or the
sentiment that the author has about those topics.

Context words give you information about writing style. You can observe patterns in
how authors use context words in order to quantify their writing style.

Once you’ve quantified their writing style, you can analyze a text written by an
unknown author to see how closely it follows a particular writing style so you can try
to identify who the author is.

3. Stemming

e Stemming is a text processing task in which you reduce words to their root, which
is the core part of a word.

e For example, the words “helping” and “helper” share the root “help.”

e Stemming allows you to zero in on the basic meaning of a word rather than all the
details of how it’s being used.

e NLTK has more than one stemmer, but we’ll be using the Porter stemmer.
Python program for Stemming

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

stemmer = PorterStemmer()

string_for stemming = "The crew of the USS Discovery discovered many
discoveries. Discovering is what explorers do."

words =word_tokenize(string for stemming)

print(words)

stemmed words = [stemmer.stem(word) for word in words]
print(stemmed words)

Output

Page 12

NLP

L}

['The', 'crew’, 'of', 'the', 'USS', 'Discovery', 'discovered', 'many', 'discoveries', .",
'Discovering', 'is', 'what', 'explorers', 'do', '.’]

['the', 'crew', 'of, 'the', 'uss', 'discoveri', 'discov', 'mani', 'discoveri', ', 'discov', is',
'what', 'explor’, 'do’, '.”]

Original word Stemmed version
'Discovery' 'discoveri'
'discovered' 'discov'
'discoveries' 'discoverti'
'Discovering' 'discov'

4. Tagging Parts of Speech
Part of speech is a grammatical term that deals with the roles words play when
you use them together in sentences. Tagging parts of speech, or POS tagging, is
the task of labeling the words in your text according to their part of speech.

Part of speech | Role Examples
Noun Is a person, place, or thing mountain, bagel,
Poland

Pronoun Replaces a noun you, she, we

Adjective Gives information about what a noun is efficient, windy,
like colorful

Verb Is an action or a state of being learn, is, go

Adverb Gives information about a verb, an efficiently, always,
adjective, or another adverb very

Preposition Gives information about how a noun or from, about, at
pronoun is connected to another word

Conjunction Connects two other words or phrases so0, because, and

Page 13

Interjection Is an exclamation yay, oW, Wow

* Some sources also include the category articles (like “a” or “the”) in the list of parts
of speech, but other sources consider them to be adjectives. NLTK wuses the
word determiner to refer to articles.

Python program for Tagging Parts of Speech
import nltk
nltk.download('punkt’)
nltk.download('averaged perceptron tagger')
from nltk.tokenize import word tokenize
sagan quote ="""

If you wish to make an apple pie from scratch,

you must first invent the universe."""
words_in_sagan quote =word tokenize(sagan quote)
nltk.pos_tag(words in sagan quote)
Output:

. [(If,'INY), ('you', PRP"), (‘wish', 'VBP"), ('to', 'TO"), ('make, 'VB"), (an', 'DT"), (‘apple’,
'NN'), (‘pie’, NN, (‘from', 'IN), ('scratch’, NN, ('), ',)), (‘'you', 'PRP'), ('must’, 'MD"),
(first', 'VB'), ('invent, 'VB'), ('the', 'DT'), ('universe', NN'), (., ')]

POS Tag information
* nltk uses The Penn Treebank's POS tags
nltk.download('tagsets')

nltk.help.upenn_tagset()

5. Lemmatizing

* Like stemming, lemmatizing reduces words to their core meaning, but it will give
you a complete English word that makes sense on its own instead of just a fragment of
a word like 'discoveri'.

* A lemma is a word that represents a whole group of words, and that group of words is
called a lexeme.

* For example, if you were to look up the word “blending” in a dictionary, then you’d
need to look at the entry for “blend,” but you would find “blending” listed in that
entry.

* In this example, “blend” is the lemma, and “blending” is part of the lexeme. So when
you lemmatize a word, you are reducing it to its lemma.

NLP

Page 14

NLP

5. Python Program for Lemmatization

import nltk
nltk.download('punkt’)

nltk.download('wordnet')

from nltk.stem import WordNetLemmatizer

from nltk.tokenize import word_tokenize

lemmatizer = WordNetLemmatizer()

string_for lemmatizing = "The friends of DeSoto love scarves."

words = word_tokenize(string_for lemmatizing)

lemmatized words = [lemmatizer.lemmatize(word) for word in words]

print(lemmatized words)

Output:

lemmatizer.lemmatize("worst")

o/p: 'worst’

lemmatizer.lemmatize("worst", pos="a")

6.

o/p: 'bad'

Chunking

chunking allows you to identify phrases.

A phrase is a word or group of words that works as a single unit to perform a
grammatical function. Noun phrases are built around a noun.

Here are some examples:

“A planet”

“A tilting planet”

“A swiftly tilting planet”

Chunking makes use of POS tags to group words and apply chunk tags to those
groups. Chunks don’t overlap, so one instance of a word can be in only one chunk
at a time.

After getting a list of tuples of all the words in the quote, along with their POS
tag. In order to chunk, you first need to define a chunk grammar.

Note: A chunk grammar is a combination of rules on how sentences should be
chunked. It often uses regular expressions, or regexes.

Create a chunk grammar with one regular expression rule:
grammar = "NP: {<DT>?<JJ>*<NN>}*

Create a chunk parser with this grammar:

Page 15

Python program for chuncking
import nltk
nltk.download('puckt')
from nltk.tokenize import word tokenize
quote = "It's a dangerous business, Frodo, going out your door."
words_quote = word tokenize(quote)
print(words_quote)
nltk.download("averaged perceptron_tagger")
tags = nltk.pos_tag(words_quote)
print(tags)
#Regular expression for Noun Phrase
grammar = "NP: {<DT>?7<JJ>*<NN>}"
#Create a chunk parser with this grammar:
chunk parser = nltk.RegexpParser(grammar)
tree = chunk parser.parse(tags)
print(tree)
Output:
* ['Tt,"™s",'a', 'dangerous', 'business', '), 'Frodo', ',', 'going', 'out', 'your', 'door’, '."]

 [(Tt,"PRP), ("'s", 'VBZ'), (‘a', 'DT"), ('dangerous', '1J"), ('business', 'NN"), (',", ","),
('Frodo', NNP"), ('), ")), ('going', 'VBG"), (‘out', 'RP"), ('your', 'PRP$"), ('door’, 'NN"),

)
< (S
* It/PRP
 's/'VBZ

* (NP a/DT dangerous/JJ business/NN)
./, Frodo/NNP
* ,/, going/VBG

* out/RP

* your/PRP$

* (NP door/NN)
s /)

NLP

Page 16

Tree Representation

$
—— T N e
itPRP 's VBZ NP Frodo NNP going VBG outRP your PRP$ NP
Iy |
— /
aDT dangerous JJ Dbusiness NN door NN

7. Chinking

* Chinking is used together with chunking, but while chunking is used to include a
pattern, chinking is used to exclude a pattern.

Python program to perform chinking
import nltk
nltk.download('puckt')
from nltk.tokenize import word_tokenize
quote = "It's a dangerous business, Frodo, going out your door."
words_quote = word _tokenize(quote)
print(words_quote)
nltk.download("averaged perceptron_tagger")
tags = nltk.pos_tag(words quote)
print(tags)
#Regular expression
grammar = """
Chunk: {<.*>+}
p<JI>{me
chunk parser =nltk.RegexpParser(grammar)
tree = chunk parser.parse(tags)
print(tree)
Output:
« ['Tt,™s",'a', 'dangerous', 'business', ',', 'Frodo', ',', 'going', 'out', 'your', 'door’, '."]

* [(Tt,"PRP"), ("'s", 'VBZ"), (‘a', 'DT"), ('dangerous', '1J"), ('business', 'NN"), (',", ","),
('Frodo', NNP"), (',", ")), ('going', 'VBG"), (‘out', 'RP"), ('your', 'PRP$"), ('door’, 'NN"),
()

NLP Page 17

< (S
(Chunk It/PRP 's/VBZ a/DT)

* dangerous/JJ

* (Chunk business/NN ,/, Frodo/NNP ,/, going/VBG out/RP your/PRP$ door/NN ./.))

Tree Representation
S
e ————
Chunk dangerous JJ Chunk
et T e ———
tPRP 'sVBZ aDT business NN Frodo NNP going VBG outRP your PRP$ door NN

8. Using Named Entity Recognition (NER)
Some Examples of Named Entity Recognition (NER)

MNE type Examples

ORGAMIZATION Georgia-Pacific Corp., WHO

PERSOMN Eddy Bonte, President Obama
LOCATIOMN Murray River, Mount Everest

DATE June, 2008-06-29

TIME two fifty a m, 1:30 p.m.

MOMNEY 175 million Canadian dollars, GBP 10.40
PERCEMNT twenty pct, 18.75 %o

FACILITY Washington Monument, Stonehenge
GPE South East Asia, Midlothian

Python Program to Name Entity Recognition
import nltk

nltk.download('punkt’)

from nltk.tokenize import word_tokenize

quote = "It's a dangerous business, Frodo, going out your door."
words_quote = word_tokenize(quote)
print(words_quote)

nltk.download("averaged perceptron_tagger")
tags = nltk.pos_tag(words_quote)
nltk.download("maxent ne chunker")
nltk.download("words")

tree =nltk.ne chunk(tags)

print(tree)

Output
['It', "s",'a', 'dangerous', 'business', ',', 'Frodo', ',', 'going', 'out', 'your', 'door’, "."]

NLP

Page 18

NLP

(S
It/PRP
's’'VBZ
a/DT
dangerous/JJ
business/NN
/s
(PERSON Frodo/NNP)
/s
going/VBG
out/RP
your/PRP$
door/NN

1)

Note: If we use this code it simply specifies that it is a Named Entity with out
giving the specification.

tree = nltk.ne_chunk(tags, binary=True)
print(tree)
Output
=
Tt/ PRP
s SMMWB T
asS DT
dangerous 3730
business AR
> .
(MNME Frodo S TWNRP
>
soingJwBiG
ouit S RP
woursSPREPS
oo MR
- D

Page 19

20

Natural Language Processing
Unit-11

2.1 Parsing Natural Language

2.2 Treebanks: A Data-Driven Approach to Syntax 2.3Representation of Syntactic Structure
2.3 Parsing Algorithms

2.4 Models for Ambiguity Resolution in Parsing

The parsing in NLP is the process of determining the syntactic structure of a text by analysing
its constituent words based on an underlying grammar.
Example Grammar:

sentence -> noun_phrase, verb_phrase
noun_phrase > proper_noun
noun_phrase -=> determiner, noun
verb_phrase -> verb, noun_phrase
proper_noun > [Tom]

noun -> [apple]

verb > [ate]

determiner -> [an]

Then, the outcome of the parsing process would be a parse tree, where sentence is the root,
intermediate nodes such as noun phrase, verb phrase etc. have children - hence they are

called non-terminals and finally, the leaves of the tree ‘Tom’, ‘ate’, ‘an’, ‘apple’ are called
terminals.

Parse Tree:

sentence
noun_phrase verb_phrase
proper_noun verb noun_phrase
determiner noun

“Tom™ ‘ate” an” “apple”

* Asentence is parsed by relating each word to other words in the sentence which depend
on it.

» The syntactic parsing of a sentence consists of finding the correct syntactic structure of
that sentence in the given formalism/grammar.

* Dependency grammar (DG) and phrase structure grammar (PSG) are two such
formalisms.

* PSG breaks sentence into constituents (phrases), which are then broken into smaller
constituents.

* Describe phrase, clause structure Example: NP, PP, VP etc.,

* DG: syntactic structure consists of lexical items, linked by binary asymmetric relations
called dependencies.

* Interested in grammatical relations between individual words.

» Does propose a recursive structure rather a network of relations

L e
NLP Page 20

21

» These relations can also have labels.

» treebank can be defined as a linguistically annotated corpus that includes some kind
of syntactic analysis over and above part-of-speech tagging.

Constituency tree vs Dependency tree

* Dependency structures explicitly represent
- Head-dependent relations (directed arcs)
- Functional categories (arc labels)
- Possibly some structural categories (POS)
» Phrase structure explicitly represent
- Phrases (non-terminal nodes)
- Structural categories (non-terminal labels)
- Possible some functional categories (grammatical functions)

Defining candidate dependency trees for an input sentence
» Learning: scoring possible dependency graphs for a given sentence, usually by
factoring the graphs into their component arcs
» Parsing: searching for the highest scoring graph for a given sentence

Syntax:

* In NLP, the syntactic analysis of natural language input can vary from being very low-
level, such as simply tagging each word in the sentence with a part of speech (POS), or
very high level, such as full parsing.

* In syntactic parsing, ambiguity is a particularly difficult problem because the most
possible analysis has to be chosen from an exponentially large number of alternative
analyses.

* From tagging to full parsing, algorithms that can handle such ambiguity have to be
carefully chosen.

» Here we explore the syntactic analysis methods from tagging to full parsing and the use
of supervised machine learning to deal with ambiguity.

2.1 Parsing Natural Language

* In a text-to-speech application, input sentences are to be converted to a spoken output
that should sound like it was spoken by a native speaker of the language.

* Example: He wanted to go a drive in the country.

» There is a natural pause between the words derive and In in sentence that reflects an
underlying hidden structure to the sentence.

» Parsing can provide a structural description that identifies such a break in the intonation.

* Asimpler case: The cat who lives dangerously had nine lives.

* In this case, a text-to-speech system needs to know that the first instance of the word
lives is a verb and the second instance is a noun before it can begin to produce the
natural intonation for this sentence.

» This is an instance of the part-of-speech (POS) tagging problem where each word in
the sentence is assigned a most likely part of speech.

* Another motivation for parsing comes from the natural language task of summarization,
in which several documents about the same topic should be condensed down to a small
digest of information.

* Such a summary may be in response to a question that is answered in the set of

L e
NLP Page 21

22

documents.

* In this case, a useful subtask is to compress an individual sentence so that only the
relevant portions of a sentence is included in the summary.

» For example: Beyond the basic level, the operations of the three products vary widely.
The operations of the products vary.

* The elegant way to approach this task is to first parse the sentence to find the various
constituents: where we recursively partition the words in the sentence into individual
phrases such as a verb phrase or a noun phrase.

2.2 Treebanks: A Data-Driven Approach to Syntax

» Parsing recovers information that is not explicit in the input sentence.

» This implies that a parser requires some knowledge (syntactic rules) in addition to the
input sentence about the kind of syntactic analysis that should be produced as output.

» One method to provide such knowledge to the parser is to write down a grammar of the
language — a set of rules of syntactic analysis as a CFGs.

» In natural language, it is far too complex to simply list all the syntactic rules in terms
of a CFG.

» The second knowledge acquisition problem- not only do we need to know the syntactic
rules for a particular language, but we also need to know which analysis is the most
plausible(probably) for a given input sentence.

» The construction of treebank is a data driven approach to syntax analysis that allows us
to address both of these knowledge acquisition bottlenecks in one stroke.

» A treebank is simply a collection of sentences (also called a corpus of text), where each
sentence is provided a complete syntax analysis.

» The syntactic analysis for each sentence has been judged by a human expert as the most
possible analysis for that sentence.

» A lot of care is taken during the human annotation process to ensure that a consistent
treatment is provided across the treebank for related grammatical phenomena.

» There is no set of syntactic rules or linguistic grammar explicitly provided by a
treebank, and typically there is no list of syntactic constructions provided explicitly in
a treebank.

» A detailed set of assumptions about the syntax is typically used as an annotation
guideline to help the human experts produce the single-most plausible syntactic
analysis for each sentence in the corpus.

» Treebanks provide a solution to the two kinds of knowledge acquisition bottlenecks.

» Treebanks solve the first knowledge acquisition problem of finding the grammar
underlying the syntax analysis because the syntactic analysis is directly given instead
of a grammar.

» In fact, the parser does not necessarily need any explicit grammar rules as long as it can
faithfully produce a syntax analysis for an input sentence.

» Treebank solve the second knowledge acquisition problem as well.

» Because each sentence in a treebank has been given its most plausible(probable)
syntactic analysis, supervised machine learning methods can be used to learn a scoring
function over all possible syntax analyses.

» Two main approaches to syntax analysis are used to construct treebanks: dependency
graph and phrase structure trees.

» These two representations are very closely related to each other and under some

L e
NLP Page 22

Y VvV

23

assumptions, one representation can be converted to another.

Dependence analysis is typically favoured for languages such as Czech and Turkish,
that have free word order.
Phrase structure analysis is often used to provide additional information about long-
distance dependencies and mostly languages like English and French.
NLP: is the capability of the computer software to understand the natural language.
There are variety of languages in the world.
Each language has its own structure (SVO or SOV)->called grammar ->has certain set
of rules->determines: what is allowed, what is not allowed.
English: S O V Other languages: SVOorOSV
I eat mango
Grammar is defined as the rules for forming well-structured sentences.
belongs to VN
Different Types of Grammar in NLP
1. Context-Free Grammar (CFG)
2.Constituency Grammar (CG) or Phrase structure grammar
3.Dependency Grammar (DG)

Context-Free Grammar (CFG)

Mathematically, a grammar G can be written as a 4-tuple (N, T, S, P)

N or Vn = set of non-terminal symbols, or variables.

T or)’ = set of terminal symbols.

S = Start symbol where S € N

P = Production rules for Terminals as well as Non-terminals.

It has the form oo — [, where a and B are strings on Vx U)’ at least one symbol of a.

NLP

+ Example: Jogn hit the ball
S ->NPVP
VP->V NP
V ->hit
NP->DN
D->the
N->John|ball

Page 23

24

Application of grammar rewrite rules

S — NP VP Det — that | this| a | the

S —» Aux NP VP Noun —+ book | flight | meal | man
S — VP Verb — book | include | reasd

NP —« Det NOM Aux —= does

NOM — Noun
NOM — Noun NOM
VP —» Verb

VP — Verb NP

—+ The NOM VP
s The Noun VP Par t
—» The man VP TRNEEN
—+ The man Verb NP
—+ The man read NP
The man read Det NOM

—+ The man read this NOM =
—« The man read this Noun - B
—+ The man read this book NP vP
Det NOM Ve'r.iv';-(‘NP
' e e
The Nciun ,‘Ld Det NOM
|
man this Noun

e
2.3 Representation of Syntactic Structure
2.3.1 Syntax Analysis Using Dependency Graphs
» The main philosophy behind dependency graphs is to connect a word- the head of a
phrase- with the dependents in that phrase.
» The notation connects a head with its dependent using a directed (asymmetric)
connections.
» Dependency graphs, just like phrase structures trees, is a representation that is
consistent with many different linguistic frameworks.
» The words in the input sentence are treated as the only vertices in the graph, which are
linked together by directed arcs representing syntactic dependencies.

L e
NLP Page 24

25

» In dependency-based syntactic parsing, the task is to derive a syntactic structure for an
input sentence by identifying the syntactic head of each word in the sentence.

» This defines a dependency graph, where the nodes are the words of the input sentence
and arcs are the binary relations from head to dependent.

prefer S
! flight NP vp
e 1 ®
the morning Denver Pro Verb NP
I prefer Det Nom
through the Nom PP
N N
A\ P
7 "N P
Nom Noun P NP
Noun flight rthrough Pro
morning Denver

A dependency-sty le parse alongside the corresponding constituent-based analy sis for 7 prefer the
morning mgnt through Denver:

» The dependency tree analyses, where each word depends on exactly one parent,
either another word or a dummy root symbol.

* By convention, in dependency tree 0 index is used to indicate the root symbol
and the directed arcs are drawn from the head word to the dependent word.

* In the Fig shows a dependency tree for Czech sentence taken from the Prague

dependency treebank.
|#, 288, 0]
/\\‘
\\‘
[vsak, JE, §) [.ZIr 11)
b
/’/‘/“.\\‘
— ~
’/_/ \\\
= I N
-~ - e
[, VPPIA 2] | ZiP, o) [chybi, VPP3IA 9]
have LITENS
N N
” ~
e N / .
- \\ s N
// N / \
~ -
» -
[studemti, N1 1) | zajem, N4, 5) {fakulte, N3. 7] {anglictinar, N1, 10]
students mterest faculty(dative) teachers of english
///
//‘
./
lo, Ra, 3)
in
N
\\
h

[inzyky, NIP4AA_ 4)
languages

= Each node in the graph is a word, its part of speech and the position of the word in the
sentence. * For example [fakulte, N3,7] is the seventh word in the sentence with POS
tag N3.

= The node [#, ZSB,0] is the root node of the dependency tree.

NLP Page 25

26

There are many variations of dependency syntactic analysis, but the basic textual format
for a dependency tree can be written in the following form.

Where each dependent word specifies the head Word in the sentence, and exactly one
word is dependent to the root of the sentence.

An important notation in dependency analysis is the notation of projectivity, which is a
constraint imposed by the linear order of words on the dependencies between words.
A projective dependency tree is one where if we put the words in a linear order based
on the sentence with the root symbol in the first position, the dependency arcs can be
drawn above the words without any crossing dependencies.

NI \

\ 0l
V NI N LU

/ / / - -
/

lohn gave Mary N apple John qgave Marv 1 Wwple

Phrase structum tree and the corresponding Dependency structure tree

2.3.2 Syntax Analysis Using Phrase Structures Trees

NLP

A Phrase Structure syntax analysis of a sentence derives from the traditional sentence
diagrams that partition a sentence into constituents, and larger constituents are formed
by meaning smaller ones.

Phrase structure analysis also typically incorporate ideas from generative grammar
(from linguistics) to deal with displaced constituents or apparent long-distance
relationships between heads and constituents.

A phrase structure tree can be viewed as implicitly having a predicate-argument
structure associated with it.

Sentence includes a subject and a predicate. The subject is a noun phrase (NP) and the
predicate is a verb phrase.

For example, the phrase structure analysis: Mr. Baker seems especially sensitive, taken
from the Penn Treebank.

The subject of the sentence is marked with the SBJ marker and predicate of the sentence
is marked with the PRD marker.

Page 26

27

* NNP: proper noun, singular VBZ: verb, third person singular present ADJP: adjective
phrase RB: adverb JJ: adjective

+ The same sentence gets the following dependency tree analysis: some of the
information from the bracketing labels from the phrase structure analysis gets mapped
onto the labelled arcs of the dependency analysis.

ROO PRD

> i

"~

. e 7"‘—<\
o NMOD SBING AMOD™

root M Baker seems especially sensinive
* To explain some details of phrase structure analysis in treebank, which was a project
that annotated 40,000 sentences from the wall street journal with phrase structure tree.

(SBARQ (WHNP—1 What)
(SQ is (NP-SBJ Tim)
(VP eating (NP *=T»—1)))
-
» The SBARQ label marks what questions ie those that contain a gap and therefore
require a trace.
» Wh- moved noun phrases are labelled WHNP and put inside SBARQ. They bear an
identity index that matches the reference index on the *T* in the position of the gap.
» However, questions that are missing both subject and auxiliary are label SQ
NP-SBJ noun phrases cab be subjects.
» *T* traces for wh- movement and this empty trace has an index (here it is 1) and
associated with the WHNP constituent with the same index.

A\

Parsing Algorithms
* Given an input sentence, a parser produces an output analysis of that sentence.
» Treebank parsers do not need to have an explicit grammar, but to discuss the parsing
algorithms simpler, we use CFG.
* The simple CFG G that can be used to derive string such as a and b or ¢ from the start

symbol N.
N > N ‘and’ N
N -> N ‘or’ N
. ca?)LD | ‘e

e An important concept for parsing is a derivation.
e For the input string a and b or ¢, the following sequence of actions separated by symbol
represents a sequence of steps called derivation.

NLP Page 27

28

N -> N ‘and’ N
=> N ‘or ¢’ N ->N ‘or’ N
>) and A
N -> ‘a 1. I C

» In this derivation, each line is called a sentential form.

» In the above derivation, we restricted ourselves to only expanded on the
rightmost nonterminal in each sentential form.

» This method is called the rightmost derivation of the input using a CFG.

» This derivation sequence exactly corresponds to the construction of the
following parse tree from left to right, one symbol at a time.

= However, a unique derivation sequence is not guaranteed.
= There can be many different derivations.
= For example, one more rightmost derivation that results following parse tree.

(N (N a)
and
(N (N b)
or
(N <c)))
A And D oxr &°
=> N and b or c’? # use r»Mile N -> \
=> N and” N ’or c’ # use r»mile N -> Db
=> N ’and’” N ’or’” N # use rale N > C
=> N "and’” N # use rle N -> N or N
=> N # use rule N > N and N
Shift Reduce Parsing

» To build a parser, we need an algorithm that can perform the steps in the above
rightmost derivation for any grammar and for any input string.

» Every CFG turns out to have an automaton that is equivalent to it, called
pushdown automata (just like regular expression can be converted to finite-state
automata).

» An algorithm for parsing that is general for any given CFG and input string.

» The algorithm is called shift-reduce parsing which uses two data structures: a
buffer for input symbols and a stack for storing CFG symbols.

NLP

Page 28

10

Shift Reduce Parser

Start with the sentence to be parsed in an input buffer,

e o "shift"” action correponds to pushing the next input symbol from the
buffer onto the stack

e o "reduce” action occurrs when we have a rule's RHS on top of the
stack To perform the reduction, we pop the rule's RHS off the stack
and replace 1t with the terminal on the LHS of the caorresponding rule

(When withaer "shift" or "reduce” s possible, choose one arbitrarily.)

If yvou end up with only the S At symbaol on the stack, then success!
If yvou don't, and you cannot and no “"shift"” or "reduce” actions are possible,
backtrack.

anoand b or o Lt
n n and b or ¢ shift a
(N a) N and b or ¢ recluce N -> a
(N a) and N and b or e shift and
(N a) and b N and b or o shift b
(N a) and (N b) N and N or o recdluce N -> b
(N (N a) and (N b)) N or ¢ recdluce N => a
(N (N a) and (N b)) or N or o shift or
(N (N a) and (N b)) or ¢ N or ¢ shift ¢
(N (N a) and (N b)) or (N ¢) N or N recluce N -> ¢
(N (N (N a) and (N b)) or (N «)) N redduce N -> N or N
(N (N (N a) and (N b)) or (N ¢)) N Accept!

N ->N ‘and’ N
N->N ‘or’ N
¥ =>‘a’ | 'bp? | ‘¢

| SNoParseTree Stk lput _[Action |
o aandborc Init
2 F a andborc Shift a
“ (Na) N andborc Reduce N->a
(Na)and N and borc Shift and
-H (Na)and b Nandb orc Shift b
; ' (Na)and (Nb) NandN orc Reduce N->b
& rf b ‘N . (N(Na)and (Nb)) N orc Reduce N->Nand N
=20 Y] (N(Na)and (Nb))or N or C Shift or
I (N (N a) and (N b)) or ¢ Norc Shift c
(N(Na)and (Nb)jor(Nc) NorN Reduce N->c
(N(N(Na)and (Nb))or (Nc) N Reduce N->N or N

L, Start with an cmpty stock and the huffer contains the inpat string,.

N=>N 'and’

~

Foxit with suceoss if the top of the stack contanins the start symbol of the
prnrnne ancd iF the hatlor is cinapty,

3. Choose hotweon the following two steps (i the cholce s mnbiguons, chooso

one basod on an ornelo):

e Shift o syimbol from the huatfer onto the staclk,

e |l I||l'|n|l/. syvinbols of the stack (AN R TN A ') which I"illl'hl”lllllN'ID'III'
vight<hond side of 0 CRFG rale A »oovy coaovy then replnce the top A
svinbols with the left-hand side non<tevminnl A

Lo Exit with failure if no action ean boe takon in provioons stop,

*

5. Else, o to Step 2.

NLP

Page 29

Hypergraphs and Chart Parsing (CYK Parsing)

» CFG s in the worst case such a parser might have to resort to backtracking, which means
re-parsing the input which leads to a time that is exponential in the grammar size in the
worst case.

Variants of this algorithm (CYK) are often used in statistical parsers that attempt to
search the space of possible parse trees without the limitation of purely left to right

parsing.
One of the earliest recognition parsing algorithm is CYK (Cocke, Kasami and younger)
parsing algorithm and It works only with CNF(Chomsky normal form).

N -> N ’ana
N=->N"oxr’ N
N - D.) ')b’ l lc)

is re-written into a new CFG G, .

two non-terminals, This is done by introduoc,.

N -> NN~
N => ’and’ N
N => N Nv

Nv => ’or’ N
N =-> ’a’ | 'b? | '1e?

CYK example:

NLP

12

13

¢/ y that represents the forest of parse troes is shown below. Imagine that the input
string is broken up into spans @ a 1 and 2 b 3 or 4 ¢ § s0 that a is span 0,1 and the
string & or ¢ is the span 2.5 in this string. The non-terminals in this forest grammar
/. incluade the span information. The different parse trees that can be generated
using this grammar are the valid parse trees for the input sentence,

N[O,5] -> N[O,1] N~[1,5] § i
N[O,3] -> N[O,1] N~[1,3] oAl
N~[1,3] -> ’and’[1,2] N[2,3] M=t | b | e
N~“[1,58] -> ?and?’[1,2] N[2.5])
N[O0,5] -> N[O,3] Nv[3,5] I8 re-written Into n new CFG G, where the right hand side only contains up to
:\52[2:1?25] —i>N '[3;-?][3?2][3&?1 B3 two non-terminals, This is done by introducing two new non-terminals ¥* o Ny:
N[O,1] =-> ’a’[0,1] N> NN
N[R,3] => "b? [2,3]) N* => 'and’ N
N[4,5] -> ’c’[4,5] N=>NDNv
Nv => 'or' N

N> s | '»! l g!

In this view, a parsing algorithm is defined as taking as input a CFG and an
input string and producing a specialized CFG that is a compact representation of
all legal parses for the input. A parser has to create all the valid specialized rules or
alternatively create a path from the start symbol non-terminal that spans the entire
string to the leal nodes that are the input tokens.

Let us examine the steps the parser has to take to construct a specialized CFG.
First let us consider the rules that generate only lexical items:

N[0,1] -> ’a’[0,1]
N[2,3] -> ’b’[2,3]
N[4,5] -> ’¢’[4,5]
N[0,5]
// R \ N[0,5]
N[0,1] N (1,5] - A "
F N N[0,3] Nv(3,5]
w(0,1] 'and’(1,2] N[2,5] P ' \\
d N[0,1] N*[1,3] ‘or'[3,4] NJ[4,5]
N[2,3] Nv[3,5] ’ P
/,/ 'W'[0,1] ‘and’[1,2] N[2,3] ‘e'[4,5)

"H'(2,3] 'or'[3,4] N[4,5]
’ 'W[2,3]
'e'[d,]
Figure 1.8, Parse treos emmbodded in the specialized CEG for a partiealar inpuat steing. The

nodes with the smnoe lnhel, e N/0,5) can bhe merged to form o hypergeaph ropresentation
of nll parses for the inpuat,

N[0,56] -> N[0,1] N"[1,5]
N[0,3]) -> N[0,1] N"[1,3] =5 N ‘and! N

W=>N'or'N

N*[1,3) -> 'and’([1,2]) N[2,3]
N*“[1,56] => 'and’[1,2] N[2,5]
N[O,5] => N[0,3] Nv[3,5]
N[2,5] => N[2,3] Nv[3,6]
Nv[3,56] => 'or’[3,4] N[4,5]
N[O,1] => ’a’[0,1]

N[2,3]) => 'b’[2,3]

N(4,6] => '¢’[4,5)]

NLP

R0 L R

I8 re-written into u new CFG G, where the right hand sido only containg up to
two nottermbnals, This Is done by introducing two new non-terminals §° and fv:

N=>NK

N* <> 'and’ N
N=>NNv

Ny => 'or’ N

N_) lni ’ lhl l ICO

Page 3

= Natural Language Processing | CKY Algorithm & Parsing | CFG to CNF | Probabilistic.. @ » @

= Natural Language Processing | CKY Algorithm & Parsing | CFG to CNF | Probabilistic.. @ # @

Models for Ambiguity Resolution in Parsing

Here we discuss on modelling aspects of parsing: how to design features and ways to resolve
ambiguity in parsing.

Probabilistic context-free grammar

* Ex: John bought a shirt with pockets

0
NLP

15

(s (NP John)

(s (NP John)
(vP (VP <V bought)

(VP (V bought)
) (NP (NP (D a)
i (N shirt))
(N shirt))) ; -
(PP (P with)
(PP (P with)

(NP pnckets)))))
(NP pnckets))))

Here we want to provide a model that matches the intuition that the second tree above
is preferred over the first.

The parses can be thought of as ambiguous (leftmost to rightmost) derivation of the

following CFG:
= _— NP vE
;::ZP ~>l ct John’ \ ‘pockets’ 1 D N | NP PP
VP —> VWV NP | VP PP
v _— ‘bbought?
D —> “‘a’
N _— ‘shixt”’
!"’P) — P NP
B2 —>

‘*with’

We assign scores or probabilities to the rules in CGF in order to provide a score or
probability for each derivation.

‘ . ND > 0 o
;P‘;>hiji;n$1(0%1) | ’pockets; (0.1) | DN (0.3) |
VP -> V NP (0.9) | VP PP (0.1)

vV -> ‘bought’ (1.0)

N =% ‘ar 1.9

N -> ‘shirt’ (1.0)

PP -> P NP (1.0)

P -> ‘with’ (1.0)

NP PP (0.85)

» From these rule probabilities, the only deciding factor for choosing between the two
parses for John brought a shirt with pockets in the two rules NP->NP PP and VP-> VP
PP. The probability for NP -> NP PP is set higher in the preceding PCFG.

» The rule probabilities can be derived from a treebank, consider a treebank with three
tress tl, t2, t3

If we assume that tree t1 occurred 10 times in the treebank, t2 occurred 20 times and
t3 occurred 50 times, then the PCFG we obtain from this treebank is:

Page 5

16

0 Q | A 1042050 = 0.125 S — 4 B
().25 Q { 104 fr;':_':ﬁ = .25 = AC
0.625 S _, ¢ 104 :w(’;“. =062 8 4 ¢

X TN e S T0+320 = 0354 A o n
0.667 A 050 =0.667 A .q
0285 B —waan ;3i7gi["’li, = 0.285 B — aq aq

5
0 | (' aQ a ¢ 20450 T‘,-'ll (V*'II a 1

* For input a a a there are two parses using the above PCFG: the probability P1 =0.125
0.334 0.285=10.01189 p2=0.25 0.667 0.714 =0.119.
» The parse tree p2 is the most likely tree for that input.

Generative models

e To find the most plausible parse tree, the parser has to choose between the possible
derivations each of which can be represented as a sequence of decisions.

* Let each derivation D = d1,d2,.....,dn, which is the sequence of decisions used to
build the parse tree.

* Then for input sentence x, the output parse tree y is defined by the sequence of
steps in the derivation.

* The probability for each derivation:

.] | ”,

* The conditioning context in the probability P(di|d1..........,di-1) is called the history
and corresponds to a partially built parse tree (as defined by the derived

sequence).
* We make a simplifying assumption that keeps the conditioning context to a finite

set by grouping the histories into equivalence classes using a function:

Using ®, each history H,; das v sy for
.or(H;). In terms of these k feature functions:

all z,y is mapped to some fixed finite set of

feature functions of the history ¢ (H;),

Pldi. s dx) I[/ &1 (H,) b (H;))

1

Discriminative models for Parsing
* Colins created a simple notation and framework that describes various discriminative

approaches to learning for parsing.

NLP Page 6

17

* This framework is called global linear model.

* Let x be a set of inputs and y be a set of possible outputs that can be a sequence of
POS tags or a parse tree or a dependency analysis.

* Each x&x and y€y is mapped to a d-dimensional feature vector o(x,y), with each
dimension being a real number.

* A weight parameter vector wERd assigns a weight to each feature in o(x,y),
representing the importance of that feature.

* The value of a(x,y).w is the score of (x,y) . The height the score, the more possible it is
that y is the output of x.

* The function GEN(x) generates the set of possible outputs y for a given x.

* Having o(x,y).w and GEN(x) specified, we would like to choose the height scoring
candidate y* from GEN(x) as the most possible output

F'(x)

= argmax ply | =, w)

we GEN(x

where F(x) returns the highest scoring output y* from GEN(x)
* A conditional random field (CRF) defines the conditional probability as a linear score
for each candidate y and a global normalization term:

logply | o, w log

Plz.y) -w

-

'eCENA

¥y S CLoN 2

exp(P(z,y') - w)

* Asimple linear model that ignores the normalization term is:

F(x)

argmax ®(r. vy
sENlx

W

= Natural Language Processing | CKY Algorithm & Parsing | CFG to CNF | Probabilistic... @ ~ @

e \

[jugm —
/ 535 Matiy/clew/lable

(o0 (W21
| .]\ 2. - 4 5
y (028 7 Tl
o |2*e—knee =5
”. " 2 4 \,NIOOZ‘. |
D4) 002 bl
= "V e Y/ SEC N
10 T T T
3 \ Deb NP ~ 008 0.0y
o 0.
— LT : ™ | 52xe05%0-001y
l a0 0.” 0’9’\

4|

N 18:38

NLP

T —

19:12 « CKY Parsing >

Page 7

NP,

DT,

the

N, V

child ate

¥ Rule Giwm
SaNp VP

- \Vp

NP = Y
NP ART AD) N
Vp=v

Vp-v N

»

NLP

+ There are two general approaches to parsing 1.Top down parsing (start with start symbol)
2.Botttom up parsing (start from terminals)

SO L LU

S
P e
-""/// \\\-~
NP, VP
P e\
/ . s \\.‘
DT, N, V NP,
N
| l | ._// Lo Y :
the child ate Nf‘, PAP i1d’ '‘fo
DT, N; PRP NP.
T —_—
the cake with DT; N,
||
— the fork

18

9
‘Vf’
NP,
NP, pp
DT, Ny PRP NP,

I | | /

the cake with DT, N,

the fork -
ve N ¥ VP N'
L A -
v A X S | -"r" News,
| b,

Page 8

Unit-3: N-gram Language Models (Part-I)

Uses of Language Modelling:

1. Predicting is difficult—especially about the future What word, for example, is likely to
follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over, but probably

not refrigerator or the.

We will formalize this intuition by introducing models that assign a probability to each possible
next word. The same models will also serve to assign a probability to an entire sentence. Such
a model, for example, could predict that the following sequence has a much higher probability

of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk
than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

2. Why would you want to predict upcoming words, or assign probabilities to sentences?
Probabilities are essential in any task in which we have to identify words in noisy, ambiguous

input, like speech recognition. For a speech recognizer to realize that you said

I will be back soonish and not I will be bassoon dish, it helps to know

that back soonish is a much more probable sequence than bassoon dish.

3. For writing tools like spelling correction or grammatical error correction, we need to
find and correct errors in writing like Their are two midterms, in which There was mistyped
as Their, or Everything has improve, in which improve should have been improved. The
phrase There are will be much more probable than Their are, and has improved than has

improve, allowing us to help users by detecting and correcting these errors.

4. Assigning probabilities to sequences of words is also essential in machine translation.

Suppose we are translating a Chinese source sentence:
ttm o&E NEBT TE AR

He to reporters introduced main content

L e
NLP Page 1

As part of the process we might have built the following set of potential rough
English translations:

he introduced reporters to the main contents of the statement

he briefed to reporters the main contents of the statement

he briefed reporters on the main contents of the statement

5. Probabilities are also important for augmentative and alternative communication AAC
systems. People often use such AAC devices if they are physically unable to speak or sign but
can instead use eye gaze or other specific movements to select words from a menu to be

spoken by the system. Word prediction can be used to suggest likely words for the menu.

Language Models: Models that assign probabilities to sequences of words are called language

models or LMs. The simplest model that assigns probabilities to sentences and sequences of
words are the n-gram. An n-gram is a sequence of n words: a 2-gram (which we’ll call bigram)
is a two-word sequence of words like “please turn”, “turn your”, or ”your homework”, and a
3-gram (a trigram) is a three-word sequence of words like “please turn your”, or “turn your

homework™.

We’ll see how to use n-gram models to estimate the probability of the last word of an n-gram
given the previous words, and also to assign probabilities to entire sequences. The n-gram
models are much simpler than state-of-the art neural language models based on the RNNs and

transformers.

N-Grams
P(w}h), the probability of a word w given some history h. Suppose the history h is “its water
is so transparent that” and we want to know the probability that the next word is the:

P(thelits water is so transparent that).
One way to estimate this probability is from relative frequency counts: take a very large corpus,
count the number of times we see its water is so transparent that, and count the number of times
this is followed by the. This would be answering the question “Out of the times we saw the

history h, how many times was it followed by the word w”, as follows:

P(thelits water is so transparent that) =

C(its water is so transparent that the)

C(its water is so transparent that)

With a large enough corpus, such as the web, we can compute these counts and estimate the

probability. While this method of estimating probabilities directly from counts works fine in

L e
NLP Page 2

many cases, it turns out that even the web isn’t big enough to give us good estimates in most
cases. This is because language is creative; new sentences are created all the time, and we won’t
always be able to count entire sentences. Even simple extensions of the example sentence may
have counts of zero on the web (such as “Walden Pond’s water is so transparent that the”; well,
used to have counts of zero). Similarly, if we wanted to know the joint probability of an entire
sequence of words like its water is so transparent, we could do it by asking “out of all possible
sequences of five words, how many of them are its water is so transparent?” We would have
to get the count of its water is so transparent and divide by the sum of the counts of all possible

five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce more clever ways of estimating the probability of a
word w given a history h, or the probability of an entire word sequence W. Now, how can we
compute probabilities of entire sequences like P(wi;w2;...;wn)? One thing we can do is
decompose this probability using the chain rule of probability:

Applying the chain rule to words, we get

Pwi,) = Pwp)P(walwi)P(wi|lwia). . .P(wy|win—1)

n
— TIPOvlwras)

k=1
The chain rule shows the link between computing the joint probability of a sequence and
computing the conditional probability of a word given previous words. But using the chain rule
doesn’t really seem to help us! We don’t know any way to compute the exact probability of a

word given a long sequence of preceding words, P(wWn|W1:n-1).

The intuition of the n-gram model is that instead of computing the probability of a word given
its entire history, we can approximate the history by just the last few words. The bigram model,
approximates the probability of a word given all the previous words P(wn|w1.n-1) by using only
the conditional probability of the preceding word P(wn|wn-1). In other words, instead of
computing the probability

P(the|Walden Pond’s water is so transparent that)

we approximate it with the probability F(the|that)
When we use a bigram model to predict the conditional probability of the next word, we are
thus making the following approximation:
P(wy|wim—1) = P(w,|w,—1)
The assumption that the probability of a word depends only on the previous word is Markov

called a Markov assumption. Markov models are the class of probabilistic models that assume

L e
NLP Page 3

4

we can predict the probability of some future unit without looking too far into the past. We can
generalize the bigram (which looks one word into the past) to the trigram (which looks two

words into the past) and thus to the n-gram (which looks n-1 words into the past).

Let’s see a general equation for this n-gram approximation to the conditional probability of the
next word in a sequence. We’ll use N here to mean the n-gram size, so N = 2 means bigrams
and N = 3 means trigrams. Then we approximate the probability of a word given its entire
context as follows:

P(walwipn—1) = P(Wp|Wn-Nt1:n—-1)
Given the bigram assumption for the probability of an individual word, we can compute the

probability of a complete word sequence

n
P(wia) = [[POwelwi—1)

k=1
An intuitive way to estimate probabilities is called maximum likelihood estimation or MLE.
We get the MLE estimate for the parameters of an n-gram model by getting counts from a

corpus, and normalizing the counts so that they lie between 0 and 1.

For example, to compute a particular bigram probability of a word w, given a previous word
wn-1, we’ll compute the count of the bigram C(wn-1wn) and normalize by the sum of all the

bigrams that share the same first word wy.i:

C(wp—1wp)

P(”‘/lluv”fl) — C(H' 7|)

Let’s work through an example using a mini-corpus of three sentences. We’ll first need to
augment each sentence with a special symbol <s> at the beginning of the sentence, to give us

the bigram context of the first word. We’ll also need a special end-symbol. </s>

<s> [am Sam </s>
<s> Sam [am </s>
<s>1 do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus.

P(Il<s>) =32 = .67 P(Sam|<s>) =1 =.33 P(am|I)= 3 = .67
1

P(</s>|Sam) =1 =0.5 P(Sam|lam)=1=5 P(do|I)= 1= .33

Maximum Likelihood Estimate:

C(wp—1wyp)

Pwylw,—1) = C(wp—1)
n—

The above equation estimates the n-gram probability by dividing the observed frequency of a

particular sequence by the observed frequency of a prefix. This ratio is called a relative

L e
NLP Page 4

frequency. We said above that this use of frequencies as a way to estimate probabilities is an
example of maximum likelihood estimation or MLE. In MLE, the resulting parameter set
maximizes the likelihood of the training set T given the model M (i.e., P(T|M)). For example,
suppose the word Chinese occurs 400 times in a corpus of a million words like the Brown
corpus. What is the probability that a random word selected from some other text of, say, a
million words will be the word Chinese? The MLE of its probability is 400/1000000 or :0004.
Now :0004 is not the best possible estimate of the probability of Chinese occurring in all
situations; it might turn out that in some other corpus or context Chinese is a very unlikely
word. But it is the probability that makes it most likely that Chinese will occur 400 times in a
million-word corpus.
Let’s move on to some examples from a slightly larger corpus than our 14-word example above.
We’ll use data from the now-defunct Berkeley Restaurant Project, a dialogue system from the
last century that answered questions about a database of restaurants in Berkeley, California.
Here are some text normalized sample user queries (a sample of 9332 sentences is on the
website):

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

1’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Figure below shows the bigram counts from a piece of a bigram grammar from the Berkeley
Restaurant Project. Note that the majority of the values are zero. In fact, we have chosen the
sample words to cohere with each other; a matrix selected from a random set of eight words

would be even more sparse.

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 It 0 0
spend 1 0 1 0 0 0 0 0

IBTIIREME Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

NLP Page 5

6

Figure below shows the bigram probabilities after normalization (dividing each cell above

Figure by the appropriate unigram for its row, taken from the following set of unigram

probabilities):
i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
i want to eat chinese food lunch spend

i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0O 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0O 0.00092 0.0037 0O 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0O 0 0 0 0

TR ®] Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Here are a few other useful probabilities:

P(il<s>)=0.25 P(english|want) =0.0011
P(food|english)=0.5 P(</s>|food)=0.68

Now we can compute the probability of sentences like I want English food or I want Chinese

food by simply multiplying the appropriate bigram probabilities together, as follows:

P(<s> i want english food </s>)
= P(il|l<s>)P(want|i)P(english|want)
P(food|english)P(</s>| food)
= 25 .33 ;0011 x0:5 X 0:68
= .000031

compute the probability of 1 want chinese food.

Some practical issues: Although for pedagogical purposes we have only described trigram
bigram models, in practice it’s more common to use trigram models, which condition on the
previous two words rather than the previous word, or 4-gram or even 5-gram models, when
there is sufficient training data. Note that for these larger ngrams, we’ll need to assume extra
contexts to the left and right of the sentence end.

For example, to compute trigram probabilities at the very beginning of the sentence, we use

two pseudo-words for the first trigram (i.e., P(I|<s><s>).
We always represent and compute language model probabilities in log format as log

probabilities. Since probabilities are (by definition) less than or equal tol, the more

probabilities we multiply together, the smaller the product becomes. Multiplying enough n-

NLP

Page 6

grams together would result in numerical underflow. By using log probabilities instead of raw
probabilities, we get numbers that are not as small.
p1 X p2 % p3 x ps =exp(logp; +log pr +log p3 +1og p4)

Evaluating Language Models

The best way to evaluate the performance of a language model is to embed it in an application
and measure how much the application improves. Such end-to-end evaluation is called extrinsic
evaluation. Extrinsic evaluation is the only way to know if a particular improvement in a
component is really going to help the task at hand. Thus, for speech recognition, we can
compare the performance of two language models by running the speech recognizer twice,
once with each language model, and seeing which gives the more accurate transcription.
Unfortunately, running big NLP systems end-to-end is often very expensive. Instead, it would
be nice to have a metric that can be used to quickly evaluate potential improvements in a
language model. An intrinsic evaluation metric is one that measures the quality of a model

independent of any application.

For an intrinsic evaluation of a language model we need a test set. As with many of the
statistical models in our field, the probabilities of an n-gram model come from the corpus it is
trained on, the training set or training corpus. We can then measure the quality of an n-gram
model by its performance on some unseen data called the test set or test corpus. So if we are
given a corpus of text and want to compare two different n-gram models, we divide the data
into training and test sets, train the parameters of both models on the training set, and then
compare how well the two trained models fit the test set. But what does it mean to “fit the test
set”? The answer is simple: whichever model assigns a higher probability to the test set—
meaning it more accurately predicts the test set, is a better model.

Perplexity

In practice we don’t use raw probability as our metric for evaluating language models, but a
variant called perplexity. The perplexity (sometimes called PPL for short) of a language model
on a test set is the inverse probability of the test set, normalized by the number of words. For a

test set W =wlw2...wN,:

perplexity(W) = P(wlwz...wN)_Al’

_ N !
N P(wiwa...wy)

We can use the chain rule to expand the probability of W:

N
! 1
. _ N l I
perplexity(W) = \J L Pwilwr . owiy)

L e
NLP Page 7

8

The perplexity of a test set W depends on which language model we use. Here’s the perplexity

of W with a unigram language model (just the geometric mean of the unigram probabilities):

perplexity(W) =

The perplexity of W computed with a bigram language model is still a geometric mean, but

now of the bigram probabilities:

N
. " 1
perplexny(W) = N\' I Im
i=1 PP

Minimizing perplexity is equivalent to maximizing the test set probability according to the
language model.

Given a text W, different language models will have different perplexities. Because of this,
perplexity can be used to compare different n-gram models. Let’s look at an example, in which
we trained unigram, bigram, and trigram grammars on 38 million words (including start-of-
sentence tokens) from the Wall Street Journal, using a 19,979 word vocabulary. We then
computed the perplexity of each of these models on a test set of 1.5 million words, using Eq.
for unigrams, for bigrams, and the corresponding equation for trigrams. The table below shows

the perplexity of a 1.5 million word WSJ test set according to each of these grammars.

Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information the n-gram gives us about the word sequence, the higher

the probability the n-gram will assign to the string.

Sampling sentences from a language model

One important way to visualize what kind of knowledge a language model embodies is to
sample from it. Sampling from a distribution means to choose random points according to their
likelihood. Thus, sampling from a language model, which represents a distribution over
sentences, means to generate some sentences, choosing each sentence according to its
likelihood as defined by the model. Thus, we are more likely to generate sentences that the
model thinks have a high probability and less likely to generate sentences that the model thinks
have a low probability.

This technique of visualizing a language model by sampling was first suggested very early on
by Shannon (1951) and Miller and Selfridge (1950). It’s simplest to visualize how this works
for the unigram case. Imagine all the words of the English language covering the probability
space between 0 and 1, each word covering an interval proportional to its frequency. Figure

shows a visualization, using a unigram LM computed from the text of this book. We choose a

L e
NLP Page 8

random value between 0 and 1, find that point on the probability line, and print the word whose
interval includes this chosen value. We continue choosing random numbers and generating

words until we randomly generate the sentence-final token </s>.

polyphonic
p=.0000018
however i
the of a to in (P=.0003) _ ;

[006 [o003 Joo2]oo2]o0o]] coe Y T
= I l I I I oo l Xy I I

.06 .09 .11 .13.15 .66 .99
0 1

IOTOICIRIR] A visualization of the sampling distribution for sampling sentences by repeat-

edly sampling unigrams. The blue bar represents the relative frequency of each word (we’ve
ordered them from most frequent to least frequent, but the choice of order is arbitrary). The
number line shows the cumulative probabilities. If we choose a random number between 0
and 1, it will fall in an interval corresponding to some word. The expectation for the random
number to fall in the larger intervals of one of the frequent words (the, of, a) is much higher
than in the smaller interval of one of the rare words (polyphonic).

We can use the same technique to generate bigrams by first generating a random bigram that
starts with <s> (according to its bigram probability). Let’s say the second word of that bigram
is w. We next choose a random bigram starting with w (again, drawn according to its bigram
probability), and so on.

Generalization and Zeros

The n-gram model, like many statistical models, is dependent on the training corpus. One
implication of this is that the probabilities often encode specific facts about a given training
corpus. Another implication is that n-grams do a better and better job of modelling the training
corpus as we increase the value of N. We can use the sampling method from the prior section
to visualize both of these facts! To give an intuition for the increasing power of higher-order
n-grams, Figure below shows random sentences generated from unigram, bigram, trigram, and

4-gram models trained on Shakespeare’s works.

—To him swallowed confess hear both. Which. Of save on trail for are ay device and

1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
2 king. Follow.

gram —What means. sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 ’tis done.

gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram —It cannot be but so.

IO CIRRIY Eicht sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

L e
NLP Page 9

10

The longer the context on which we train the model, the more coherent the sentences. In the
unigram sentences, there is no coherent relation between words or any sentence-final
punctuation. The bigram sentences have some local word-to-word coherence (especially if we
consider that punctuation counts as a word). The trigram and 4-gram sentences are beginning
to look a lot like Shakespeare. Indeed, a careful investigation of the 4-gram sentences shows
that they look a little too much like Shakespeare. The words It cannot be but so are directly
from King John. From Shakespeare (N =884,647, V=29,066), our n-gram probability matrices
are ridiculously sparse. There are V2 =844,000,000 possible bigrams alone, and the number of
possible 4-grams is V4 = 7X10'7. Thus, once the generator has chosen the first 4-gram (It
cannot be but), there are only five possible continuations (that, I, he, thou, and so); indeed, for
many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an n-gram
grammar trained on a completely different corpus: the Wall Street Journal (WSJ) newspaper.
Shakespeare and the Wall Street Journal are both English, so we might expect some overlap
between our n-grams for the two genres. Figure below shows sentences generated by unigram,
bigram, and trigram grammars trained on 40 million words from WSIJ.

Compare these examples to the pseudo-Shakespeare in above figure. While they both model
“English-like sentences”, there is clearly no overlap in generated sentences, and little overlap
even in small phrases. Statistical models are likely to be pretty useless as predictors if the

training sets and the test sets are as different as Shakespeare and WSIJ.

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

o

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

IBT0ICIRE] Three sentences randomly generated from three n-gram models computed from

40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-

tion as words. Output was then hand-corrected for capitalization to improve readability.
How should we deal with this problem when we build n-gram models? One step is to be sure
to use a training corpus that has a similar genre to whatever task we are trying to accomplish.
To build a language model for translating legal documents, we need a training corpus of legal
documents. To build a language model for a question-answering system, we need a training
corpus of questions. It is equally important to get training data in the appropriate dialect or

variety, especially when processing social media posts or spoken transcripts.

L e
NLP Page 10

Matching genres and dialects is still not sufficient. Our models may still be subject to the
problem of sparsity. For any n-gram that occurred a sufficient number of times, we might have
a good estimate of its probability. But because any corpus is limited, some perfectly acceptable
English word sequences are bound to be missing from it. That is, we’ll have many cases of
putative “zero probability n-grams” that should really have some non-zero probability.
Consider the words that follow the bigram denied the in the WSJ Treebank3 corpus, together
with their counts:

denied the allegations:
denied the speculation:
denied the rumors:
denied the report:

2

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!

These zeros—things that don’t ever occur in the training set but do occur in the test set—are a
problem for two reasons. First, their presence means we are underestimating the probability of
all sorts of words that might occur, which will hurt the performance of any application we want
to run on this data. Second, if the probability of any word in the test set is 0, the entire
probability of the test set is 0. By definition, perplexity is based on the inverse probability of
the test set. Thus, if some words have zero probability, we can’t compute perplexity at all, since
we can’t divide by 0! There are two solutions, depending on the kind of zero. For words whose
n-gram probability is zero because they occur in a novel test set context, like the example of
denied the offer above, we’ll introduce algorithms called smoothing or discounting.
Smoothing algorithms shave off a bit of probability mass from some more frequent events and
give it to these unseen events. But first, let’s talk about an even more insidious form of zero:
words that the model has never seen below at all (in any context): unknown words!
Unknown Words

What do we do about words we have never seen before? Perhaps the word Jurafsky simply
did not occur in our training set, but pops up in the test set! We can choose to disallow this
situation from occurring, by stipulating that we already know all the words that can occur. In
such a closed vocabulary system the test set can only contain words from this known lexicon,
and there will be no unknown words.

In most real situations, however, we have to deal with words we haven’t seen before, which
we’ll call unknown words, or out of vocabulary (OOV) words. The percentage of OOV words

that appear in the test set is called the OOV rate. One way to create an open vocabulary system

NLP Page 1

is to model these potential unknown words in the test set by adding a pseudo-word called
<UNK>.

There are two common ways to train the probabilities of the unknown word model <UNK>.
The first one is to turn the problem back into a closed vocabulary one by choosing a fixed
vocabulary in advance:

1. Choose a vocabulary (word list) that is fixed in advance.

2. Convert in the training set any word that is not in this set (any OOV word) to the unknown
word token <UNK> in a text normalization step.

3. Estimate the probabilities for <UNK> from its counts just like any other regular word in the
training set.

The second alternative, in situations where we don’t have a prior vocabulary in advance, is to
create such a vocabulary implicitly, replacing words in the training data by <UNK> based on
their frequency. For example, we can replace by <UNK> all words that occur fewer than n
times in the training set, where n is some small number, or equivalently select a vocabulary
size V in advance (say 50,000) and choose the top V words by frequency and replace the rest
by <UNK>. In either case we then proceed to train the language model as before, treating
<UNK> like a regular word.

Smoothing

What do we do with words that are in our vocabulary (they are not unknown words) but appear
in a test set in an unseen context (for example they appear after a word they never appeared
after in training)? To keep a language model from assigning zero probability to these unseen
events, we’ll have to shave off a bit of probability mass from some more frequent events and
give it to the events we’ve never seen. This modification is called smoothing or discounting.
Now we’ll see a variety of ways to do smoothing: Laplace (add-one) smoothing, add-k
smoothing, stupid backoff, and Kneser-Ney smoothing.

Laplace Smoothing

The simplest way to do smoothing is to add one to all the n-gram counts, before we normalize
them into probabilities. All the counts that used to be zero will now have a count of 1, the
counts of 1 will be 2, and so on. This algorithm is called Laplace smoothing. Laplace smoothing
does not perform well enough to be used smoothing in modern n-gram models, but it usefully
introduces many of the concepts that we see in other smoothing algorithms, gives a useful
baseline, and is also a practical smoothing algorithm for other tasks like text classification.
Let’s start with the application of Laplace smoothing to unigram probabilities. Recall that the
unsmoothed maximum likelihood estimate of the unigram probability of the word wi is its

count ci normalized by the total number of word tokens N:

L e
NLP Page 2

P(\\',‘) -

2|0
\
y

Laplace smoothing merely adds one to each count (hence its alternate name add one
smoothing). Since there are V words in the vocabulary and each one was incremented, we also
need to adjust the denominator to take into account the extra V observations.

ci+ 1
N+V

P aplace (Wi) =

Let’s smooth our Berkeley Restaurant Project bigrams. Figure below shows the add-one

smoothed counts for the bigrams in Berkeley Restaurant Project.

i want to eat chinese food lunch spend
i 6 828 1 10 | | | 3
want 3 1 609 2 7 7/ 6 2
to 3 | 5 687 3 1 7 212
eat 1 | 3 | 17 3 43 |
chinese 2 | 1 1 | 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 9 1 1 1 1 1

I3T01CRRY Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Recall that normal bigram probabilities are computed by normalizing each row of counts by
the unigram count:

C(wp—1Wp)

P(Wn|h‘n,]}: Com)
i

For add-one smoothed bigram counts, we need to augment the unigram count by the number

of total word types in the vocabulary V:

L, C(wp—1wp) +1 - C(wp—1wy) +1
ZW(C(“'IHI“') +1) C(wp—1)+V

&:1plzlce(”'::|“'n—l)

Thus, each of the unigram counts given in the previous section will need to be augmented by

V =1446. The result is the smoothed bigram probabilities in Figure below.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058
Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP

corpus of 9332 sentences. Previously-zero probabilities are in gray.

NLP Page 3

i want to eat chinese food lunch spend
1 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 12 0.39 238 0.78 2.7 2.9 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 44 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.
The sharp change in counts and probabilities occurs because too much probability mass is
moved to all the zeros.
Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass from the
seen to the unseen events. Instead of adding 1 to each count, we add a fractional count k (.5?

.05? .01?). This algorithm is therefore called add-k smoothing.

C(“ m—1Wn) +k
Clwyp—1) +kV

‘D;\clcl—k (Wa|wn—1) =
Add-k smoothing requires that we have a method for choosing k; this can be done, for example,
by optimizing on a devset. Although add-k is useful for some tasks (including text
classification), it turns out that it still doesn’t work well for language modelling, generating
counts with poor variances and often inappropriate discounts.
Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero frequency
n-grams. But there is an additional source of knowledge we can draw on. If we are trying to
compute P(wn|wnown-1) but we have no examples of a particular trigram wnoWn-1Wn, We can
instead estimate its probability by using the bigram probability P(wn|wn-1). Similarly, if we
don’t have counts to compute P(wq|Wwn.1), we can look to the unigram P(wy). In other words,
sometimes using less context is a good thing, helping to generalize more for contexts that the
model hasn’t learned much about. There are two ways to use this n-gram “hierarchy”. In
backoff, we use the trigram if the evidence is sufficient, otherwise we use the bigram, otherwise
the unigram. In other words, we only “back off” to a lower-order n-gram if we have zero

evidence for a higher-order n-gram.

By contrast, in interpolation, we always mix the probability estimates from all the n-gram
estimators, weighting and combining the trigram, bigram, and unigram counts. In simple linear

interpolation, we combine different order n-grams by linearly interpolating them. Thus, we

L e
NLP Page 4

estimate the trigram probability P(wn|wn2Wn-1) by mixing together the unigram, bigram,
and trigram probabilities, each weighted by a
A:

p(w,,|n',,~3w,,_|) = MiP(wp)
+22P(wWy|wy_1)
+A3P("’n|"'1172”‘nfl)

The As must sum to 1, making Equation equivalent to a weighted average:

Y Ai=1

Word Embedding techniques: Bag of words (BOW)

Natural Language Processing technique of text modeling known as Bag of Words model. Whenever
we apply any algorithm in NLP, it works on numbers. We cannot directly feed our text into that
algorithm. Hence, Bag of Words model is used to preprocess the text by converting it into a bag of
words, which keeps a count of the total occurrences of most frequently used words. This model can
be visualized using a table, which contains the count of words corresponding to the word itself.

Applying the Bag of Words model: Let us take this sample paragraph for our task

Beans. | was trying to explain to somebody as we were flying in, that's corn.
That's beans. And they were very impressed at my agricultural knowledge.
Please give it up for Amaury once again for that outstanding introduction. |
have a bunch of good friends here today, including somebody who | served
with, who is one of the finest senators in the country, and we're lucky to have
him, your Senator, Dick Durbin is here. | also noticed, by the way, former
Governor Edgar here, who | haven't seen in a long time, and somehow he has
not aged and | have. And it's great to see you, Governor. | want to thank
President Killeen and everybody at the U of | System for making it possible for
me to be here today. And | am deeply honored at the Paul Douglas Award that
is being given to me. He is somebody who set the path for so much
outstanding public service here in lllinois. Now, | want to start by addressing
the elephant in the room. | know people are still wondering why | didn't speak

at the commencement.

NLP Page 5

Step #1 : We will first preprocess the data, in order to:

e Convert text to lower case.

e Remove all non-word characters.

e Remove all punctuations.

Python3 code for preprocessing text
import nltk

import re

import numpy as np

execute the text here as :

text =""" # place text here """

dataset = nltk.sent_tokenize(text)

for i in range(len(dataset)):
dataset[i] = dataset[i].lower()
dataset[i] = re.sub(r'\W', ' ', dataset[i])
dataset[i] = re.sub(r'\s+', ' ', dataset]i])

Value

i was trying to explain to somebody as we were flying in that s corn

and they were very impressed at my agricultural knowledge

please give it up for amaury once again for that outstanding introduct
i have a bunch of good friends here today including somebody who i ser

i also noticed by the way former governor edgar here who 1 haven t see

i want tao thank president killeen and everybody at the u of 1 system
and i am deeply honored at the paul douglas award that is being given
he is somebody who set the path for so much outstanding public serwvice

now i want to start by addressing the elephant in the room

i know people are still wondering why i didn t speak at the commencems

Index Type Size

gé Estr . o

~1 —

2 str 1 that s beans
E str 1

4 str 1

5 str 1

B str 1

7 str 1 and it s great to see you governor
8 str 1

9 str 1

1a str 1

11 str 1

12 str 1

NLP

You can further preprocess the text to suit you needs.

Step #2 : Obtaining most frequent words in our text. We will apply the following
steps to generate our model.

we declare a dictionary to hold our bag of words.
Next we tokenize each sentence to words.
Now for each word in sentence, we check if the word exists in our dictionary.

If it does, then we increment its count by 1. If it doesn't, we add it to our dictionary and set its count
as 1.

Creating the Bag of Words model
word2count = {}
for data in dataset:

words = nltk.word_tokenize(data)
for word in words:

if word not in word2count.keys():
word2count|word] =1

else:
word2count|word] += 1

NLP

Page 7

& word2count - Dictionary (118 elerents) — O >

Key Type Size Value G
a ... N ,
addressmg — :
again int 1 1
aged int |1 1
agricultural int 1 1
also int 1 1
am int 1 1
amaury int |1 1
and int 1 7
are int 1 1
as int 1 1

W

In our model, we have a total of 118 words. However when processing large texts, the number of
words could reach millions. We do not need to use all those words. Hence, we select a particular

number of most frequently used words. To implement this we use:

import heapq
freq_words = heapq.nlargest(100, word2count, key=word2count.get)

where 100 denotes the number of words we want. If our text is large, we feed in a
larger number.

NLP Page 8

& freq_words - List (100 elements) - O >

Index Type Size Value 2
8 str |1 1
1 str |1 the
2 str |1 to
3 str |1 and
4 str 1 in
5 str |1 here
& str |1 for
7 str |1 at
8 str (1 that
9 str |1 who
18 str 1 is
W

Step #3 : Building the Bag of Words model In this step we construct a vector, which would tell us
whether a word in each sentence is a frequent word or not. If a word in a sentence is a frequent word,

we set it as 1, else we set it as 0. This can be implemented with the help of following code:

X=1]
for data in dataset:
vector =[]

for word in freq_words:
if word in nltk.word_tokenize(data):
vector.append(1)
else:
vector.append(0)
X.append(vector)
X = np.asarray(X)

NLP Page 9

woom oW @ W B oW o = o

=

=

Continuous Bag of Words (CBOW)

Continuous Bag of Words (CBOW) is a popular natural language processing technique used to

generate word embeddings. Word embedding’s are important for many NLP tasks because they

capture semantic and syntactic relationships between words in a language. CBOW is a neural
network-based algorithm that predicts a target word given its surrounding context words. It is a type

of "unsupervised" learning, meaning that it can learn from unlabeled data, and it is often used to pre-

train word embeddings that can be used for various NLP tasks such as sentiment analysis, text

classification, and machine translation.

target word

Predict

)

— |

Context words Context words

NLP Page 10

https://www.geeksforgeeks.org/word-embeddings-in-nlp/
https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/what-is-sentiment-analysis/
https://www.geeksforgeeks.org/text-mining-in-data-mining/
https://www.geeksforgeeks.org/text-mining-in-data-mining/
https://www.geeksforgeeks.org/machine-translation-of-languages-in-artificial-intelligence/

Is there any difference between Bag-of-Words (BoW) model and the Continuous Bag-of-Words

(CBOW)?

e The Bag-of-Words model and the Continuous Bag-of-Words model are both techniques used in
natural language processing to represent text in a computer-readable format, but they differ in how
they capture context.

e The BoW model represents text as a collection of words and their frequency in a given document
or corpus. It does not consider the order or context in which the words appear, and therefore, it
may not capture the full meaning of the text. The BoW model is simple and easy to implement, but
it has limitations in capturing the meaning of language.

e In contrast, the CBOW model is a neural network-based approach that captures the context of
words. It learns to predict the target word based on the words that appear before and after it in a
given context window. By considering the surrounding words, the CBOW model can better
capture the meaning of a word in a given context.

Architecture of the CBOW model

The CBOW model uses the context words around the target word in order to predict it. Consider the

above example ""She is a great dancer." The CBOW model converts this phrase into pairs of context

words and target words. The word pairings would appear like this ([she, a], is), ([is, great], a) (|a,

dancer], great) having window size=2.

Input layer Hidden layer Output layer

~ W (t-2)
ween

The model considers the context words and tries to predict the target term. The four 1*W input vectors
will be passed to the input layer if have four words as context words are used to predict one target
word. The hidden layer will receive the input vectors and then multiply them by a WxN matrix. The
1*N output from the hidden layer finally enters the sum layer, where the vectors are element-wise
summed before a final activation is carried out and the output is obtained from the output layer.

Code Implementation of CBOW

NLP Page 11

Let's implement a word embedding to show the similarity of words using the CBOW model. In this
article I have defined my own corpus of words, you use any dataset. First, we will import all the
necessary libraries and load the dataset. Next, we will tokenize each word and convert it into a vector

of integers.

Re-import necessary modules

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Embedding, Lambda
from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.utils import to_categorical

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

Define the corpus

corpus = |
'The cat sat on the mat',
'The dog ran in the park’',
'The bird sang in the tree'

Convert the corpus to a sequence of integers

tokenizer = Tokenizer()

tokenizer.fit_on_texts(corpus)

sequences = tokenizer.texts_to_sequences(corpus)

print("' After converting our words in the corpus into vector of integers:")

print(sequences)

Output:

After converting our words in the corpus into vector of integers:
[(ri, 3, 4, 5, 1, 6], [1, 7, 8, 2, 1, 9], [1, 10, 11, 2, 1, 12]]

NLP Page 12

Now, we will build the CBOW model having window size = 2.

Define the parameters

vocab_size = len(tokenizer.word_index) + 1
embedding_size =10

window_size =2

Generate the context-target pairs
contexts = []
targets =[]
for sequence in sequences:
for i in range(window_size, len(sequence) - window_size):
context = sequence|i - window_size:i] + sequence]i + 1:i + window_size + 1]
target = sequenceli]
contexts.append(context)
targets.append(target)

Convert the contexts and targets to numpy arrays
X = np.array(contexts)
y = to_categorical(targets, num_classes=vocab_size)

Define the CBOW model

model = Sequential()

model.add(Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=2 *
window_size))

model.add(Lambda(lambda x: tf.reduce_mean(x, axis=1)))
model.add(Dense(units=vocab_size, activation='softmax'))

Compile the model
model.compile(optimizer="adam’, loss='categorical_crossentropy', metrics=['accuracy'])

Train the model
model.fit(X, y, epochs=100, verbose=0)

Next, we will use the model to visualize the embeddings.

Extract the embeddings
embedding_layer = model.layers[0]
embeddings = embedding_layer.get weights()[0]

Perform PCA to reduce the dimensionality of the embeddings
pca = PCA(n_components=2)
reduced_embeddings = pca.fit_transform(embeddings)

Visualize the embeddings
plt.figure(figsize=(5, 5))
for word, idx in tokenizer.word_index.items():

NLP Page 13

X, y = reduced_embeddings[idx]
plt.scatter(x, y)
plt.annotate(word, xy=(x, y), xytext=(5, 2),
textcoords='offset points', ha='right', va='bottom')
plt.title(""Word Embeddings Visualized')
plt.show()

Word Embeddings Visualized

0.2 1

park m

Q
o=

0.14 sang
tree S%t

0.0 A

the
]
_01 o

blr;g dog
—0.2 -

=03

-0.3 ={).2 -0.1 0.0 0.1 0.2

This visualization allows us to observe the similarity of the words based on their embeddings. Words that are

similar in meaning or context are expected to be close to each other in the plot.

Term Frequency and Inverse Document Frequency (TF-IDF).

NLP Page 14

9. Term Frequency - Inverse Document Frequency (TF-IDF)

Term Frequency - Inverse Document Frequency (TF-IDF) is a widely
used statistical method in natural language processing and information
retrieval.
It measures how important a term is within a document relative to a collection
of documents (i.e., relative to a corpus).
Words within a text document are transformed into important numbers by a
text vectorization process.
There are many different text vectorization scoring schemes, with TF-IDF
being one of the most common.
As its name implies, TF-IDF vectorizes/scores a word by multiplying the word’s Term
Frequency (TF) with the Inverse Document Frequency (IDF).

Term Frequency: TF of a term or word is the number of times the term appears in a
document compared to the total number of words in the document.

TF number of times the term appears in the document

total number of terms in the document

Inverse Document Frequency: IDF of a term reflects the proportion of documents in
the corpus that contain the term. Words unique to a small percentage of documents
(e.g., technical jargon terms) receive higher importance values than words common

across all documents (e.g., a, the, and).

IDF = log(

number of the documents in the corpus

number of documents in the corpus contain the term

The TF-IDF of a term is calculated by multiplying TF and IDF scores.

NLP

TF-IDF =TF x IDF

Imagine the term t appears 20 times in a document that contains a total of 100
words. Term Frequency (TF) of £ can be calculated as follow:

20
TF = — =0.2
100
Assume a collection of related documents contains 10,000 documents. If 100
documents out of 10,000 documents contain the term ¢, Inverse Document
Frequency (IDF) of £ can be calculated as follows

10000 _ 5
100

IDF = log

Using these two quantities, we can calculate TF-IDF score of the term ¢ for the
document.

TF-IDF=0.2%x2=0.4

Imagine the term ¢ appears 20 times in a document that contains a total of 100
words. Term Frequency (TF) of £ can be calculated as follow:

20
P=——=0.2
100

Assume a collection of related documents contains 10,000 documents. If 100
documents out of 10,000 documents contain the term ¢, Inverse Document
Frequency (IDF) of £ can be calculated as follows

10000
IDF =1 —5
T

Using these two quantities, we can calculate TF-IDF score of the term £ for the
document.

TF-IDF=0.2%x2=0.4

NLP

Python Implementation

Some popular python libraries have a function to calculate TF-IDF. The popular
machine learning library skieszrn has Ttfidfvectorizer() function (docs).

We will write a TF-IDF function from scratch using the standard formula given above,
but we will not apply any preprocessing operations such as stop words removal,
stemming, punctuation removal, or lowercasing. It should be noted that the result
may be different when using a native function built into a library.

import pandas as pd

import numpy as np

First, let's construct a small corpus.

corpus = ['data science is one of the most important fields of science’,

ata science courses”,

[
w

‘"this is one of the best

‘data scientists analyze data’]

NLP Page 17

Next, we'll create a word set for the corpus:

words_set =

for doc in

words =

r
set()

Corpus:

doc.split("

words_set = words_set.union(set(words))

print{ 'Number of words in the corpus:’,len{words set}))

pie

print('The words in the corpus: » words_set)

Humber of words in the corpus:

The words in the corpus:

{'important’, ‘'scientists’, 'best’, 'courses’', 'this', "analyze', 'of", 'most", 'the’
L : B : s » ¥ : B ,

ourses’, 'this"', ‘analyze', 'of', 'most’, "'the’, 'is', 'science’, 'fields", ‘one', ‘'data

Computing Term Frequency

]

1

Now we can create a dataframe by the number of documents in the corpus and the

word set, and use that information to compute the term frequency (TF):

n_docs = len(corpus) # Number of documents in the

n_words_set = len(words_set) # Number of unique words in the

df_tf = pd.DataFrame(np.zeros((n_docs, n_words_set)), columns=words_set)
e Term Freque
for i in range(n_docs):
words = corpus[i].split(' ') # Words in the document
for w in words:
df_tf[w][i] = df_tf[w][i] + (1 / len(words))

df_tf

NLP

Page 18

important scientists best courses this analyze of

e 0.090209 0.00 0.000000 0.000000 0.000000 0.00 0181818
1 0.000000 0.00 o111 o1 [ONRRARY 0.00 o1
2 0.000000 0.25 0.000000 0.000000 0.000000 0.25 0.00000

The dataframe above shows we have a column for each word and a row for each
document. This shows the frequency of each word in each document.

most the is science fields one data
0.090909 0.090909 0.090509 0181818 0.0909309 0.090909 0.09(
0.000000 Q111N LORNE R 011N 0.000000 oMM o.M
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.50(

Computing Inverse Document Frequency

Now, we'll compute the inverse document frequency (IDF):

print("IDF of: ™)

idf = {}

for w in words_set:

k = # number of documents in the corpus that contain this wor
for 1 in range(n_docs):
if w in corpus[i].split():
k +=

idf[w] = np.loglé(n_docs / k)

print(f ' {w:>15}: {idf[w]:>»18}")

NLP

Putting it Together: Computing TF-IDF

Since we have TF and IDF now, we can compute TF-IDF:

df_tf_idf = df_tf.copy()

for w in words_set:
for 1 in range(n_docs):

df tf_idf[w][i] = df tf[w][i] * idf[w]

df_tf_idf
important scientists best courses this analyze of
8 0.043375 0.00000 0.000000 0.000000 0.000000 0.00000 0.C
1 0.000000 0.00000 0.053013 0.053013 0.053013 0.00000 0.C
2 0.000000 on9z2s 0.000000 0.000000 0.000000 Q11928 0.C

Notice that "data" has an IDF of 0 because it appears in every document. As a result,
is not considered to be an important term in this corpus. This will change slightly in
the following sklearn implementation, where "data" will be non-zero.

NLP Page 20

[Type text] [Type text]

NLP

N =

UNIT -1V

Semantic Parsing

Introduction

Two approaches have emerged in the NLP for language understanding.

In the first approach, a specific, rich meaning representation is created for a
limited domain for use by application that are restricted to that domain, such as
travel reservations, football game simulations, or querying a geographic
database.

In the second approach, a related set of intermediate-specific meaning representation
is created, going from low-level analysis to a middle analysis, and the bigger
understanding task is divided into multiple, smaller pieces that are more manageable,
such as word sense disambiguation followed by predicate-argument structure
recognition.

Here two types of meaning representations: a domain-dependent, deeper
representation and a set of relatively shallow but general-purpose, low-level, and
intermediate representation.

The task of producing the output of the first type is often called deep semantic
parsing, and the task of producing the output of the second type is often called
shallow semantic parsing.

The first approach is so specific that porting to every new domain can require
anywhere from a few modifications to almost reworking the solution from scratch.

In other words, the reusability of the representation across domains is very limited.

The problem with second approach is that it is extremely difficult to construct a
general-purpose ontology and create symbols that are shallow enough to be learnable
but detailed enough to be useful for all possible applications.

Ontology means

The branch of metaphysics dealing with the nature of being.

a set of concepts and categories in a subject area or domain that shows their properties
and the relations between them.

"what's new about our ontology is that it is created automatically from large datasets"

Therefore, an application specific translation layer between the more general
representation and the more specific representation becomes necessary.

Semantic Interpretation

Semantic parsing can be considered as part of Semantic interpretation, which
involves various components that together define a representation of text that can be
fed into a computer to allow further computations manipulations and search, which
are prerequisite for any language understanding system or application. Here we
discuss the structure of semantic theory.

A Semantic theory should be able to:

Explain sentence having ambiguous meaning: The bill is large is ambiguous in the
sense that is could represent money or the beak of a bird.

[Type tejt]

Page 1

https://www.google.com/search?sca_esv=560909571&q=metaphysics&si=ACFMAn-3JZRSzQzizXTr4ubOpZcLWv5ucVj0B-xNTfVNzJ0glmMrlOlUpRLauIykgXOD3O1LLTiK3nVBrcIaxb-iyKwu5riJGiFDVOoiyrYuZ8-GaFz_8fU%3D&expnd=1

[Type text] [Type text] [Type tejt]

» Resolve the ambiguities of words in context. The bill is large but need not be paid, the
theory should be able to disambiguate the monetary meaning of bill.

» Identify meaningless but syntactically well-formed sentence: Colorless green ideas
sleep furiously.

» Identify syntactically or transformationally unrelated paraphrasers of concept having
the same semantic content.

» Here we look at some requirements for achieving a semantic representation.
2.1 Structural Ambiguity

» Structure means syntactic structure of sentences.

» The syntactic structure means transforming a sentence into its underlying syntactic
representation and in theory of semantic interpretation refer to underlying syntactic
representation.

2.2 Word Sense

» In any given language, the same word type is used in different contexts and with
different morphological variants to represent different entities or concepts in the
world.

» For example, we use the word nail to represent a part of the human anatomy
and also to represent the generally metallic object used to secure other objects.

intended by the author or speaker. Let’s take the following four examples. The presence of
words such as hammer and hardware store in sentences 1 and 2, and of clipped and manicur
in sentences 3 and 4, enable humans to easily disambiguate the sense in which nail is used:

1. He nailed the loose arm of the chair with a hammer

2. He bought a box of nails from the hardware store.

3. He went to the beauty salon to get his nails clipped.

i i ils had erown very long.
4. He went to get a manicure. His nails had grown very long

herefore, constitutes one of the steps in the

ords in a discourse, t i
. epth in Section 4.4.

Resolving the sense scou Bofifore; oot
tation. We discuss it in greater d

nrocess of semantic interpre
2.3 Entity and Event Resolution

» Any discourse consists of a set of entities participating in a series of explicit or
implicit events over a period of time.

» So, the next important component of semantic interpretation is the
identification of various entities that are sparkled across the discourse using the
same or different phrases.

» The predominant tasks have become popular over the years: named entity
recognition and coreference resolution.

» Coreference resolution is the task of finding all expressions that refer to the same
entity in a text.

-

- -
“l voted for Nader because he was most

aligrred with .--,-;_:..r.z-:.'ues_-;. " she said,

2.4 Predicate Argument Structure

L e
NLP Page 2

[Type text] [Type text]

[Type tq

Page 3

> Once we have the word-sense, entities and events identified, another level of semantics
structure comes into play: identifying the participants of the entities in these events.
> Resolving the argument structure of predicate in the sentence is where we identify which
entities play what part in which event.
> A word which functions as the verb iscalled a predicate and words which function as the
nouns arecalled arguments. Here are some other predicates and arguments:
Selena slept
argument predicate
Tom is tall
argument predicate
Percy placed the penguin on the podium
argument predicate argument argument
Bell Atlantic Corp. said it will acquire one of Control Data Corp.’s computer maintenance businesses.
What i
one of Control Data Corp’s
Tttt - \
When /L) = V\N'hcn \
% i Acqulre
Bell Atlantic Corp. R R How
W’hel;c- - \N'.hom /”J
H;)w v
Figure 4—1: A representation of who did what to whom, when, where, why, and how
2.5 Meaning Representation
> The final process of the semantic interpretation is to build a semantic representation
or meaning representation that can then be manipulated by algorithms to various
application ends.
> This process is sometimes called the deep representation.
The following two examples
\ 1§ - 2 has the ball, tl yosition our pla\ er 5 in the midfield.
(1) If our player 2 has the ball, then | ARsaid)))
((bowner (player our 2)) (do (player our 5) (pos (midfie
(2) Which river is the longest?
answer (r;, longest(z; river(zi)))
3. System Paradigms
o It is important to get a perspective on the various primary dimensions on which the
problem of semantic interpretation has been tackled.
o The approaches generally fall into the following three categories: 1.System architecture
. - =
NLP

[Type text] [Type text]

2.Scope 3. Coverage.

1. System Architectures

a. Knowledge based: These systems use a predefined set of rules or a knowledge base to
obtain a solution to a new problem.

b. Unsupervised: Thesesystemstendto requireminimal humanintervention to be
functional by using existing resources that can be bootstrapped for a particular
application or problem domain.

¢. Supervised: these systems involve the manual annotation of some phenomena
thatappear in a sufficient quantity of data so that machine learning algorithms can
be applied.

d. Semi-Supervised: manual annotation is usually very expensive and does not yield
enough data to completely capture a phenomenon. In such instances, researches
can automatically expand the data set on which their models are trained either
by employing machine-generated output directly or by bootstrapping off an
existing model by having humans correct its output.

2. Scope:
» Domain Dependent: These systems are specific to certain domains, such as
air travel reservations or simulated football coaching.

» Domain Independent: These systems are general enough that the techniques can be
applicable to multiple domains without little or no change.

3. Coverage
a. Shallow: These systems tend to produce an intermediate representation that can
then be converted to one that a machine can base its action on.

b. Deep: These systems usually create a terminal representation that is directly consumed by
a machine or application.

4. Word Sense

» Word Sense Disambiguation is an important method of NLP by which the meaning
of a word is determined, which is used in a particular context.

» In a compositional approach to semantics, where the meaning of the whole is
composed on the meaning of parts, the smallest parts under consideration in textual
discourse are typically the words themselves: either tokens as they appear in the text
or their lemmatized forms.

» Words sense has been examined and studied for a very long time.

» Attempts to solve this problem range from rule based and knowledge based to
completely unsupervised, supervised, and semi-supervised learning methods.

» Very early systems were predominantly rule based or knowledge based and used
dictionary definitions of senses of words.

» Unsupervised word sense induction or disambiguation techniques try to induce the
senses or word as it appears in various corpora.

» These systems perform either a hard or soft clustering of words and tend to allow the
tuning of these clusters to suit a particular application.

» Most recent supervised approaches to word sense disambiguation, usually
application- independent-level of granularity (including small details). Although the
output of supervised approaches can still be amendable to generating a ranking,

NLP

[Type tejt]

Page 4

[Type text] [Type text]

>

or distribution, of membership sense.

Word sense ambiguities can be of three principal types: i.homonymy ii.polysemy
iii.categorial ambiguity.
Homonymy defined as the words having same spelling or same form but having
different and unrelated meaning. For example, the word “Bat” is a homonymy word
because bat can be an implement to hit a ball or bat is a nocturnal flying mammal
also
Polysemy is a Greek word, which means “many signs”. polysemy has the same
spelling but different and related meaning.
Both polysemy and homonymy words have the same syntax or spelling. The main
difference between them is that in polysemy, the meanings of the words are related
but in homonymy, the meanings of the words are not related.
For example: Bank Homonymy: financial bank and river bank
Polysemy: financial bank, bank of clouds and book bank: indicate collection of
things.
Categorial ambiguity: the word book can mean a book which contain the chapters or
police register which is used to enter the charges against someone.
In the above note book, text book belongs to the grammatical category of noun and
book is verb.
Distinguishing between these two categories effectively helps disambiguate these two
senses.
Therefore, categorical ambiguity can be resolved with syntactic information (part
of speech) alone, but polyseme and homonymy need more than syntax.
Traditionally, in English, word senses have been annotated for each part of speech
separately, whereas in Chinese, the sense annotation has been done per lemma.

Resources:

>

>

>

>

>

As with any language understanding task, the availability of resources is key
factor in the disambiguation of the word senses in corpora.

Early work on word sense disambiguation used machine readable dictionaries or
thesaurus as knowledge sources.

Two prominent sources were the Longman dictionary of contemporary English
(LDOCE) and Roget’s Thesaurus.

The biggest sense annotation corpus OntoNotes released through Linguistic Data
Consortium (LDC).

The Chinese annotation corpus is HowNet.

Systems:
Researchers have explored various system architectures to address the sense disambiguation
problem.

We can classify these systems into four main categories: i. rules based or

knowledge ii. Supervised iii.unsupervised iv. Semisupervised

Rule Based:

>

>

NLP

The first-generation of word sense disambiguation systems was primarily based on
dictionary sense definitions.

Much of this information is historical and cannot readily be translated and made
available for building systems today. But some of techniques and algorithms are still
available.

[Type tejt]

Page 5

[Type text] [Type text]

» The simplest and oldest dictionary-based sense disambiguation algorithm was
introduced by Lesk.

The core of the algorithm is that the dictionary senses whose terms most closely overlap with
the terms in the context.

Algorithm 4—1 Pseudocode of the simplified Lesk algorithm
The function COMPUTEOVERLAP returns the number of words common to the two sets
Procedure: SIMPLIFIED_LESK(word, sentence) returns best sense of word

1. best-sense «— most frequent sense of word

2: maz-overlap «+— 0

3: context «— set of words in sentence

i: for all sense € senses of word do

5; signature < set of words in gloss and examples of sense
6: overlap «+ COMPUTEOVERLAP(signature, context)

7: if overlap gt maz-overlap then

8: mazx-overlap < overlap

9: best-sense «— sense

10: end if
11: end for
12: return best-sense

The Simplified Lesk algorithm

* Let’s disambiguate “bank” in this sentence:

The bank can guarantee deposits will eventually cover future tuition costs
because it invests in adjustable-rate mortgage securities.

e given the following two WordNet senses:

bank' Gloss: a financial institution that accepts deposits and channels the
money into lending activities
Examples: “he cashed a check at the bank™, “that bank holds the mortgage
on my home™
bank? Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank™, “he sat on the bank of

the river and watched the currents™

Choose sense with most word overlap between gloss and context
(not counting function words)

The bank can guaranteeldeposits jwill eventually cover future
tuition costs because it invests in adjustable-rate

securities.
bank! Gloss: a financial institution that accepts‘ deg_o-sits'and channels the
money into lending activities
Examples: “he cashed a check at the bank™, “that bank holds th
on my home™
bank” Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank™, “he sat on the bank of

the river and watched the currents™

Another dictionary-based algorithm was suggested Yarowsky.
This study used Roget’s Thesaurus categories and classified unseen words into one

of these 1042 categories based on a statistical analysis of 100 word concordances for each
member of each category.

NLP

[Type tejt]

Page 6

[Type text] [Type text]

The method consists of three steps, as shown in Fig below.

e The first step is a collection of contexts.

e The second step computes weights for each of the salient words.

e P(w|Rcat) is the probability of a word w occurring in the context of a Roget’s
Thesaurus category Rcat.

e P(w|Rcat) |Pr(w) , the probability of a word (w) appearing in the context of a Roget
category divided by its overall probability in the corpus.

e Finally, in third step, the unseen words in the test set are classified into the category
that has the maximum weight.

f the Roget’s Thesaurus categories.

R T 7.-7\‘7""' O
| 1. Collect contexts for each ontext.

. ; e i
9. Determine weights for each of the salient words 1n
P(w;|RCat)
P(w;)
i Y , word in the test corpus
ictl ¢ g ate category of the word in
' el ' -edicting the .\Munlnhm categor,
| 3. Use the \\1‘1}.&1!(# for pre g
| o P(w;|R(‘at) P(R("LH
\ ;n'gm;\xg log — lTHu\

RCat &=~

- i i Roget's T rus categories
Figure 4-2: Algorithm for disambiguating words into oget's Thesau g
. o

WALKER’S ALGORITHM

A Thesaurus Based approach.

Step 1: For each sense of the target word find the thesaurus category to
which that sense belongs.

Step 2: Calculate the score for each sense by using the context words. A
context words will add 1 to the score of the sense if the thesaurus category
of the word matches that of the sense.

E.g. The money in this bank fetches an interest of 8% per annum

Target word: bank
Clue words from the context: money, interest, annum, fetch

Context words
=L]_ 0 add 1 to the
sense when
the topic of the
+1 word matches that
of the sense
(0] 0
+1 0
3 0

Supervised:
. The simpler form of word sense disambiguating systems the supervised approach,
which tends to transfer all the complexity to the machine learning machinery while
still requiring hand annotation tends to be superior to unsupervised and performs best

NLP

[Type tejt]

Page 7

[Type text] [Type text]

when tested on annotated data.
. These systems typically consist of a machine learning classifier trained on various
features extracted for words that have been manually disambiguated in a given

corpus and the application of the resulting models to disambiguating words in the
unseen test sets.

. A good feature of these systems is that the user can incorporate rules and knowledge
in the form of features.
Classifier:

Probably the most common and high performing classifiers are support vector machine
(SVMs) and maximum entropy classifiers.

Features: Here we discuss a more commonly found subset of features that have been useful in
supervised learning of word sense.

Lexical context: The feature comprises the words and lemma of words occurring in the entire
paragraph or a smaller window of usually five words.

Parts of speech: the feature comprises the surrounding the word that is being sense tagged.
Bag of words context: this feature comprises using an unordered set of words in the context
window.

Local Collocations: Local collocations are an ordered sequence of phrases near the target word that
provide semantic context for disambiguation. Usually, a very small window of about three tokens
on each side of the target word, most often in contiguous pairs or triplets, are added as a list of
features.

Syntactic relations: if the parse of the sentence containing the target word is available, then we can
use syntactic features.

Topic features: The board topic, or domain, of the article that word belongs to is also a good
indicator of what sense of the word might be most frequent.

S alSO 4 S00U IIIUILAUL Wi vy ascvy ==

€] 1 € eCe Sed S € (1tic) ic features for 4“\1 m ’;; 1a :LL)H'
53 eC 1 f : o1me a l'l: 10112 ll n features 1
('11 N and ;1”1 T (|94 recen l\ ‘)]ll[) n 1

= = 1S te f a e aLes 1€ 1er ‘ll » Sentence ill V } 1 ll
(o] [0‘ || sentence l 1 Trnary featur 11l h € S W €
V ice the ll‘ 5 .
1 y 7 d S 1S Q] = 1 Qe s - act » gente '
ll\ wora ccu 1S a pass ve, @ 'lIlll)'L.l\('. O1 ctive sentend
P f b t b o < v i t1 1 at it | * t.he arget \\(.!'1
resence Of su ec (8] 'e(: i) a € 1T°€ 11C es W]l‘ tnel n Lal s
} 1 \} 11l
' 1 s / oY . Il < = . : 1se
S S € 1 D) Given l\l['l. Il 11 of ramimg (lcl , we CO ll l ~('.
188 ¢ u 1 ject. I ¢ . : A . » . 4‘
YOS \1\' e semantic I« les 1 11*‘ 1a l > 8Y al C S) J€¢

the actual lexeme anc

ul)jt‘('l.\. | |
'hi i - ature indicates whether the word has a Sel-
i —This binary feature indicates wi
Sentential complement ;
tential complement. |
eature indicates whether the target word has a

iti j —This 1 \

sitional phrase adjunct ; e Pt
PrePO_ '] 1'111“1 o and if so. selects the head of the noun phrast inside the prep«
prepositional parase, S0,

sitional phrase.

Named entity—This feature is the named entity of the proper nouns and certain

types of common nouns.

WordNet—WordNet synsets of the hypernyms of head nouns of the noun phrase

arguments of verbs and prepositions.

PSSR TR R I i wamAnvadh Sh manantia snla lakaline Dlicach and Palmer [52]
"Word sense disambiguation" (WSD) is a natural language processing (NLP) task that involves
determining the correct sense or meaning of a word within a given context. Many words in

natural language have multiple meanings or senses, and WSD aims to choose the most
appropriate sense for a word in a specific sentence or context.

NLP

[Type tejt]

Page 8

[Type text]

[Type text]

Supervised learning with Support Vector Machines (SVM) is one approach to solving the WSD
problem. Here's how it works:

Data Collection: To train an SVM for WSD, you need a labeled dataset where each word
is tagged with its correct sense in various contexts. This dataset is typically created by
human annotators who assign senses to words in sentences.

Feature Extraction: For each word in the dataset, you need to extract relevant features
from its context. These features could include the words surrounding the target word,
part-of-speech tags, syntactic information, and more. These features serve as the input to
the SVM.

Training: Once you have the labeled dataset and extracted features, you can train an
SVM classifier. The goal is to teach the SVM to learn patterns in the features that are
indicative of specific word senses.

Testing/Predicting: After training, you can use the SVM to predict the sense of an
ambiguous word in a new, unseen sentence. The SVM considers the context features and
assigns the word the most likely sense based on what it learned during training.
Evaluation: To assess the performance of your WSD system, you can use various
evaluation metrics, such as accuracy, precision, recall, and F1-score. These metrics help
you measure how well your SVM-based WSD system is performing in disambiguating
word senses.

SVMs are popular for WSD because they are effective at handling high-dimensional feature
spaces and can learn complex decision boundaries. However, the success of the SVM-based WSD
system heavily depends on the quality of the labeled dataset and the choice of features used for
training.

The identification of the head word is important in syntax because it helps determine the
grammatical structure of a phrase or sentence. For feature selection in NLP tasks like parsing or
word sense disambiguation, knowing the head word and its relationships with other words in a

NLP

[Type tejt]

Page 9

[Type text] [Type text]

sentence can be valuable information. Syntactic relations often involve the relationship between a
head word and its dependents or modifiers, and these relations can be used as features in

various natural language processing applications.

Unsupervised:

Unsupervised learning in Natural Language Processing (NLP) is a category of machine
learning where the model is trained on unlabeled data without explicit supervision or
predefined categories. It aims to discover patterns, structures, or representations within the

data. One concept related to unsupervised learning in NLP is "Conceptual Density."

HyperLex

Key Idea: Word Sense Induction

@ Instead of using “dictionary defined senses”, extract the “senses from the

corpus” itself

@ These “corpus senses” or “uses” correspond to clusters of similar

contexts for a word.

Dertecting Root Hubs

e Different uses of a target word form highly interconnected bundles (or
high density components)

@ In each high density component one of the nodes (hub) has a higher
degree than the others.

@ Step 1: Construct co-occurrence graph, G.
@ Step 2: Arrange nodes in & in decreasing order of degree.

@ Step 3: Select the node from G which has the highest degree. This node

will be the hub of the first high density component.
e Step 4: Delete this hub and all its neighbors from G.
e Step 5: Repeat Step 3 and™ to detect the hubs of other high density

Bo— O ONS

NLP

[Type tejt]

Page 10

[Type text] [Type text]

Pressure

dyne

008
gold

(h)
Qr target word
0 s 0
proasure hubs
0.08 U 0.14

gold dyne
wax
wIine descendants

steol chocolate

cocktail

@ Attach each node to the root hub closest to it.

@ The distance between two nodes is measured as the smallest sum of
weights of the edges on the paths linking them.

Computing distance between two nodes wi and wj
wij = 1 —max{P(wilw;), P(wjlw;)}

lwy) = 19
where P(wilw;) = e

NLP

[Type tejt]

Page 11

[Type text] [Type text]

@ Let W = (w,wa,....w;,....w,) be a context in which w; is an instance of
our target word.
e Let w; has & hubs in its minimum spanning tree

@ A score vector s is associated with each w; € W(j # i), such that sz
represents the contribution of the Ath hub as:

1

1 +d(hi,wy)
s; = 0O otherwise.

if /1 is an ancestor of w;
O,

Sk

@ All score vectors associated with all w; € W(j # /) are summed up
The hub whlch recelves the maximum score is chosen as the m.

Figure: Conceptual Density

Semi Supervised:
Semi-supervised learning is a machine learning paradigm that combines both labeled and
unlabeled data to improve model performance. In the context of word sense disambiguation

NLP

[Type telxt]

Page 12

[Type text] [Type text] [Type tejt]

(WSD) in Natural Language Processing (NLP), semi-supervised learning techniques can be
quite beneficial because labeled data for WSD is often limited and expensive to obtain. Here's
an overview of a semi-supervised learning algorithm for WSD:

Self-Training for WSD:

Self-training is a popular semi-supervised learning approach that can be adapted for WSD. In
self-training for WSD, you start with a small set of labeled examples and a larger set of
unlabeled examples. The process involves iterative steps:

1. Initialization: Begin with a small labeled dataset where each example consists of a
sentence containing an ambiguous word and its corresponding sense label.

2. Feature Extraction: Extract relevant features from the labeled examples, which
typically include information about the target word, its context words, part-of-speech
tags, syntactic relations, and more.

3. Model Training: Train a WSD model using the labeled data. This can be a
supervised machine learning model like Support Vector Machines (SVM), Naive
Bayes, or a neural network-based model.

4. Prediction: Use the trained model to predict word senses for the unlabeled data.
Apply the model to the sentences containing the ambiguous word from the unlabeled
dataset to assign senses to those instances.

5. Confidence Threshold: Introduce a confidence threshold or some criteria to filter the
predictions. For instance, you can choose to keep only the predictions where the
model is highly confident.

6. Adding Labeled Data: Add the confidently predicted examples to the labeled
dataset, marking them as newly labeled instances.

7. Iteration: Repeat steps 2-6 for a fixed number of iterations or until convergence.

8. Final Model: Train a final model using the combined labeled data (original labeled
dataset plus the newly labeled instances) to create a more robust WSD model.

Advantages of Self-Training for WSD:

o It leverages a larger pool of unlabeled data, which can be especially beneficial when
labeled data is scarce.

e [t allows the model to learn from its own predictions and iteratively improve.

e Self-training is a flexible approach and can be used with various machine learning
models.

Challenges:

o Labeling errors: The initial labeled dataset should be of high quality because errors
can accumulate during self-training iterations.

Semi-supervised learning with self-training can be effective for WSD, but it's essential to
carefully design the process, monitor model performance, and apply filtering criteria to
ensure the quality of the added labeled instances.

NLP Page 13

[Type text] [Type text]

Motivation and concept of Yorowsky algorithm

@ Annotations are expensive!
e “Bootstrapping” or co-training
= Start with (small) seed, learn decision list
» Use decision list to label rest of corpus
» Retain ‘confident’ labels, treat as annotated data to learn new decision list
» Repeat...
@ Heuristics (derived from observation):
» One sense per discourse
» One sense per collocation

One Sense per Discourse
@ A word tends to preserve its meaning across all its occurrences in a given
discourse

One Sense per Collocation
@ A word tends to preserve its meaning when used in the.same collocation

Strong for adjacent collocations
Weaker as the distance between the words increases

Example
@ Disambiguating plant (industrial sense) vs. plafit (living thing sense)
@ Think of seed features for each sense
Industrial sense: co-occurring with ‘manufacturing’
Living thing sense: co-occurring with ‘life’
@ Use ‘one sense per collocation’ to build initial decision list classifier
@ Treat results (having high probability) as annotated data, train new
decision list classifier, iterate

used to strain microscopic plant life from the
zonal distribution of plan! life .
closewup studies of plant life and natural
too rapid growth of aquatic plant life in water
the proliferation of plant and animal life
establishment phase of the plant virus life cycle
that divide life into plont andkanimatkingdom>
many dangers to plant andaninallife
mammals . Animal and plant life are delicarely

automated manufacturing plant in Fremont
vast manufacturing plant and distribution
chemical manufacturing plant , producing viscose
keep a manufacturing plant profitable without
computer manufacturing plant and adjacent
discovered at a St. Lovuis plant manufacturing
copper manufacturing plant found that they
copper wire manufacturing plant , for example

NLP

[Type tejt]

Page 14

[Type text] [Type text]

wvinyl chloride monomer plant | which is

molecules found in plant andconimal tissue
Nissan car and rruck plant in Japan is

and Golgi apparatus of plant andonimgl cells

union responses to plant closures .
cell types found in the plonckingdom xre
company said the plant is still operating
Alhough thousands of plant andcanimatb species

Géivsa:rﬂh.f than plaont tissuves can be

NLP

I 37..2‘“.:25\'

[Type tejt]

Page 15

[Type text] [Type text] [Type text]

Termination
@ Stop when

Error on training data is less than a threshold
No more training data is covered

@ Use final decision list for WSD

Advantages
@ Accuracy is about as good as a supervised algorithm
@ Bootstrapping: far less manual effort

Figure: Yorowsky algorithm

NLP Page 16

[Type text] [Type text] [Type text]

Word Embedding Techniques for semantic analysis

Word2Vec

What is Word Embedding?
Word Embedding is a language modeling technique for mapping words to vectors of real
numbers. It represents words or phrases in vector space with several dimensions. Word

embeddings can be generated using various methods like neural networks, co-occurrence

matrices, probabilistic models, etc. Word2Vec consists of models for generating word
embedding. These models are shallow two-layer neural networks having one input layer, one

hidden layer, and one output layer.

What is Word2Vec?

Word2Vec is a widely used method in natural language processing (NLP) that allows words to be

represented as vectors in a continuous vector space. Word2Vec is an effort to map words to high-
dimensional vectors to capture the semantic relationships between words, developed by
researchers at Google. Words with similar meanings should have similar vector representations,

according to the main principle of Word2Vec. Word2Vec utilizes two architectures:

e CBOW (Continuous Bag of Words): The CBOW model predicts the current word given
context words within a specific window. The input layer contains the context words and the

output layer contains the current word. The hidden layer contains the dimensions we want to

represent the current word present at the output layer.

NLP Page 17

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/

[Type text] [Type text] [Type text]

Input Projection Output

w(t-2)

w(t-1)

wW{t+1) j::::::::::::::::::::::;:
wWit+2)

Skip Gram : Skip gram predicts the surrounding context words within specific window given current

SUM wi(t)

word. The input layer contains the current word and the output layer contains the context words. The
hidden layer contains the number of dimensions in which we want to represent current word present at

the input layer.

Input Projection Output
w(t-2)
% e
w(t) >
wW(t+2)

NLP Page 18

[Type text] [Type text] [Type text]

The basic idea of word embedding is words that occur in similar context tend to be closer to each

other in vector space. For generating word vectors in Python, modules needed

are nltk and gensim. Run these commands in terminal to install nltk and

gensim:

pip install nltk
pip install gensim

e NLTK: For handling human language data, NLTK, or Natural Language Toolkit, is a potent
Python library. It offers user-friendly interfaces to more than 50 lexical resources and
corpora, including WordNet. A collection of text processing libraries for tasks like
categorization, tokenization, stemming, tagging, parsing, and semantic reasoning are also

included with NLTK.

e GENSIM: Gensim is an open-source Python library that uses topic modelling and document
similarity modelling to manage and analyse massive amounts of unstructured text data. It is
especially well-known for applying topic and vector space modelling algorithms, such as
Word2Vec and Latent Dirichlet Allocation (LDA), which are widely used.

Why we need Word2Vec?

In natural language processing (NLP), Word2Vec is a popular and significant method for
representing words as vectors in a continuous vector space. Word2Vec has become popular and
is utilized in many different NLP applications for several reasons:

e Semantic Representations: Word2Vec records the connections between words
semantically. Words are represented in the vector space so that similar words are near to one
another. This enables the model to interpret words according to their context within a
particular corpus.

o Distributional Semantics: The foundation of Word2Vec is the distributional hypothesis,
which holds that words with similar meanings are more likely to occur in similar contexts.
Word2Vec generates vector representations that reflect semantic similarities by learning
from the distributional patterns of words in a large corpus.

e Vector Arithmetic: Word2Vec generates vector representations that have intriguing
algebraic characteristics. Vector arithmetic, for instance, can be used to record word
relationships. One well-known example is that the vector representation of "queen" could

resemble the vector representation of "king" less "man" plus "woman."

NLP Page 19

https://www.geeksforgeeks.org/introduction-to-nltk-tokenization-stemming-lemmatization-pos-tagging/
https://www.geeksforgeeks.org/nlp-gensim-tutorial-complete-guide-for-beginners/
https://www.geeksforgeeks.org/nlp-how-tokenizing-text-sentence-words-works/
https://www.geeksforgeeks.org/introduction-to-stemming/
https://www.geeksforgeeks.org/latent-dirichlet-allocation/

[Type text] [Type text] [Type text]

o Efficiency: Word2Vec's high computational efficiency makes training on big datasets
possible. Learning high-dimensional vector representations for a large vocabulary requires
this efficiency.

e Transfer Learning: A variety of natural language processing tasks can be initiated with pre-
trained Word2Vec models. Time and resources can be saved by fine-tuning the embeddings
discovered on a sizable dataset for particular uses.

o Applications: Word2Vec embeddings have shown promise in a number of natural language

processing (NLP) applications, such as machine translation, text classification, sentiment

analysis, and information retrieval. These applications are successful in part because of their
capacity to capture semantic relationships.

e Scalability: Word2Vec can handle big corpora with ease and is scalable. Scalability like this
is essential for training on large text datasets.

e Open Source Implementations: Word2Vec has open-source versions, including one that is
included in the Gensim library. Its widespread adoption and use in both research and

industry can be attributed in part to its accessibility

Global Vector for word representation (GloVe),

NLP Page 20

https://www.geeksforgeeks.org/fine-tuning-bert-model-for-sentiment-analysis/
https://www.geeksforgeeks.org/machine-translation-of-languages-in-artificial-intelligence/
https://www.geeksforgeeks.org/what-is-sentiment-analysis/
https://www.geeksforgeeks.org/what-is-sentiment-analysis/

[Type text] [Type text] [Type text]

GloVe embedding improves Word-2-Vec’s by computing the co-occurrence of corpus words once
and deriving vector representations from it. GloVe also takes a descriptive approach towards

deriving its cost function by first examining the expected outcome of co-occurrence ratios.

GloVe implementation is often based on CRF (Conditional Random Field) which is not only a great

application of Hidden Markov Model, it leads to a discussion on Forward-Backward and Viterbi

algorithms. I also found it to serve as a prelude to Bayesian vs Generative models debate.

The focus of this article is to describe the GloVe model.

GloVe Intuition

In both Word-2-Vec and GloVe, we design word embeddings such that they reflect probability of seeing
pairs of words together. Word-2-Vec is based on presence of neighboring words in a moving window
fashion. In case of Skipgram, we observe what words appear in a neighborhood of any given corpus
word. The cost function minimizes negative likelihood of observing expected neighbor words given a

center word, Equation (1).

T
J(0) = —% Z log (p(wiyj|we 0)), for j#0 (1)

—m<j<m

Note that in Word-2-Vec we tend to re-visit neighboring words multiple times as a new center word

vector is being trained.

NLP Page 21

https://medium.com/@ellie.arbab/word-to-what-eb5a521e1f02
https://medium.com/@ellie.arbab/conditional-random-fields-f49b5355f766

[Type text] [Type text] [Type text]

Aware of this duplication of effort, GloVe training starts by forming a co-occurrence matrix X where

the 7j-th entry is the number of times words on i-th row and j-th column appeared together, Figure (1).

A fair question here is, over what window the co-occurrence matrix is formed?

Co-Occurrence Count Approaches

a. Window Count
Where a window length is decided in advance, e.g. 5 or 10. This approach tends to capture both syntactic,

e.g. Part of Speech, and semantic information.

b. Document Count
Where co-occurrences are across documents, per document in the corpus. This approach tends to extracts

general topics information and leads to Latent Semantic Analysis.

Note that in both approaches, the co-occurrence matrix is calculated once across the entire corpus and
later processed to train the word vectors. This proves to enhance the training time significantly in

comparison to Word-2-Vec.

Figure (1) depicts one such co-occurrence matrix for a window size of 1 when corpus consists of only the

following three sentences, excluding punctuations.

e [like deep learning.
e Ilike NLP.

e Ienjoy flying.

NLP Page 22

[Type text] [Type text] [Type text]

counts enjoy | deep |learning | NLP

0 2 0 0 0 0

2 0 0 1 0 1 0

l: o 0 0 0 0o 1

0 1 0 0 1 0 0

learning K4 0 0 1 0 0 0
NLP 0 1 0 0 0 0 0
fiying B 1 0 0 o o

Co-Occurrence Ratios

After counting the co-occurrences, GloVe argues that for any group of three corpus

words, wi, w2, w3; one of the following three scenarios applies:

1. w3 is relevant to both w1 and w2:

P(ws|wy)

~ 1 2
P(ws|ws) 2)

For example, let wi= “gymnastics”, w2= “javelin” and w3= “olympics™

#(olympics, gymnastics)

Z wWE corpus # (w, gymnastics)

P (olympics|gymnastics)

#(olympics, javelin)
D wecorpus F(W, javelin)

P(olympics|javelin) =

NLP Page 23

[Type text] [Type text] [Type text]

where #(v, z) denotes the respective entry in the co-occurrence matrix representing
words v and z. It’s not hard to see Equation (2) holds:

P(olympics|gymnastics)

Polympics|javelin)

w3 is only relevant to one of w1 or w2, not both:

P(ws|wy)
— > 1 3
P(ws|ws) (3)
Plws|w)
P(ws|ws) < (4)

Following the previous example, let w3= “vault” or w3= “spear”. Take a moment
to see how the ratio this time will be significantly smaller or larger than 1.

Plvaultlgymnastics
(vault|gy) o

P(vault|javelin)

Plspear|gymnastics
(spearlgy)« 4

P(spear|javelin)

NLP Page 24

[Type text] [Type text] [Type text]

3. w3 is irrelevant to both w1 and w2:

P(ws|un)
P(ws|ws)

{

(5)

Continuing on the same example, let w3= “croissant”. Once again the ratio
tends to be close to 1, as in case 1.

P(croissant|gymnastics)

P(croissant|javelin)

From Equations (2) to (5) we conclude that the co-occurrence ratio can help
distinguish case 2 from case 1 or 3. This becomes the core idea in formulating
GloVe’s cost function.

GloVe Cost Function

Let F denote the procedure through which we learn GloVe word embeddings. From Equations (2) to (5)

we expect F' to be of the following general form:

Plwg |w;
Flw;,wj,wy) = % (6)
4 47

Inputs to the left hand side of Equation (6) are vectors while the right hand side is scalar. One common
way to meet this requirement is for F to include the inner product of its inputs in its formulation.
Following similar deduction line, laid out in great details in [1], GloVe cost function takes the following

form:

NLP Page 25

[Type text] [Type text] [Type text]

4%
1 ‘
3 E f(:;r:a,,;j)(w?u!j — log :1r:a,.;j)"3 (7)

ij=1

~

—
e
|

T/ Trmar)™ if < s
fla) = { (2/%maz) (8)

1 otherwise

r;; being the (7, 7)-th entry in co-occurrence matrix,
w; and w; being the word vector embeddings,
[— 3/"1, r}:ma']' —]-ﬂn.

a and x are heuristically chosen. Here I add a note on the choice
of f, Equation (8), as I found it insightful in conducting other research

works.

Log(x) function is well-behaved for x>1, but it diverges
when 0<x<1. Since x=0 is a probable value in the co-occurrence matrix X,
we need to account for this divergence. Log(1+x) would fix the issue by

uniformly shifting all values but, we can do better!

Note that when x — 0, we are dealing with rarely co-occurring words. What
if the cost function was designed such that it under-weighted low-occurring
words as compared to high-occurring combinations? This is the role

of f from Equation (8).

To decide f, let’s specify its qualities first:

1. f(lo)=o0
2. f(x) is monotonically increasing.

3. f(x) is asymptotically bounded.

NLP Page 26

[Type text] [Type text] [Type text]

The first condition is somewhat self explanatory, although based on the
context can be adjusted to any intercept/constant value. The second
condition states that fis never decreasing. Because otherwise a less
frequently co-occurring pair is weighted higher than a pair with higher co-
occurrence. The third condition ensures highly co-occurring pairs are not
over-weighted disproportionately. This is especially true as information
decays in overly high co-occurring pair of words. Such pairs tend to contain

a stop-word, e.g. (“the”, nouns), which carries little information.

0 200

Log(x) f{x) from Equation (8)

During GloVe’s training, we iteratively try to minimize Equation (7). That is
to arrive at word vectors such that the distance between their pairwise inner

product and log of their co-occurrence is minimized.

You may have already picked up on the symmetry of word vectors on the left
and right of inner product. Since the co-occurrence matrix is symmetric,
each word gets two vector embeddings, once when its read as column value
and once as row value. GloVe assigns the sum of these two vectors as the

final word embedding:

W fingl = Wy + Wy (9)

wy, w, are the learned vectors from (wiw, — log X;,.) term in Equation (8)

NLP Page 27

[Type text] [Type text] [Type text]

Bidirectional encoder representations from transformers (BERT)

What is BERT?

BERT (Bidirectional Encoder Representations from Transformers) leverages a transformer-based

neural network to understand and generate human-like language. BERT employs an encoder-only

architecture. In the original Transformer architecture, there are both encoder and decoder modules.

The decision to use an encoder-only architecture in BERT suggests a primary emphasis on

understanding input sequences rather than generating output sequences.

Bidirectional Approach of BERT

Traditional language models process text sequentially, either from left to right or right to left. This

method limits the model's awareness to the immediate context preceding the target word. BERT uses a

bi-directional approach considering both the left and right context of words in a sentence, instead of

analyzing the text sequentially, BERT looks at all the words in a sentence simultaneously.

Example: ""The bank is situated on the of the river."

In a unidirectional model, the understanding of the blank would heavily depend on the preceding

words, and the model might struggle to discern whether "bank" refers to a financial institution or the

side of the river.

BERT, being bidirectional, simultaneously considers both the left ("The bank is situated on the") and

right context ("of the river"), enabling a more nuanced understanding. It comprehends that the

missing word is likely related to the geographical location of the bank, demonstrating the contextual
richness that the bidirectional approach brings.

Pre-training and Fine-tuning BERT Model

The BERT model undergoes a two-step process:

1. Pre-training on Large amounts of unlabeled text to learn contextual embeddings.

2. Fine-tuning on labeled data for specific NLP tasks.

Pre-Training on Large Data

e BERT is pre-trained on large amount of unlabeled text data. The model learns contextual
embeddings, which are the representations of words that take into account their surrounding
context in a sentence.

o BERT engages in various unsupervised pre-training tasks. For instance, it might learn to predict
missing words in a sentence (Masked Language Model or MLM task), understand the
relationship between two sentences, or predict the next sentence in a pair.

Fine-Tuning on Labeled Data

e After the pre-training phase, the BERT model, armed with its contextual embeddings, is then fine-

tuned for specific natural language processing (NLP) tasks. This step tailors the model to more

NLP Page 28

https://www.geeksforgeeks.org/understanding-bert-nlp/
https://www.geeksforgeeks.org/getting-started-with-transformers/
https://www.geeksforgeeks.org/natural-language-processing-overview/

[Type text] [Type text] [Type text]

targeted applications by adapting its general language understanding to the nuances of the
particular task.

e BERT is fine-tuned using labeled data specific to the downstream tasks of interest. These tasks

could include sentiment analysis, question-answering, named entity recognition, or any other NLP
application. The model's parameters are adjusted to optimize its performance for the particular
requirements of the task at hand.

BERT's unified architecture allows it to adapt to various downstream tasks with minimal

modifications, making it a versatile and highly effective tool in natural language understanding and

processing.

How BERT work?

BERT is designed to generate a language model so, only the encoder mechanism is used. Sequence of

tokens are fed to the Transformer encoder. These tokens are first embedded into vectors and then

processed in the neural network. The output is a sequence of vectors, each corresponding to an input
token, providing contextualized representations.

When training language models, defining a prediction goal is a challenge. Many models predict the

next word in a sequence, which is a directional approach and may limit context learning.

BERT addresses this challenge with two innovative training strategies:

1. Masked Language Model (MLM)

2. Next Sentence Prediction (NSP)

1. Masked Language Model (MLM)

In BERT's pre-training process, a portion of words in each input sequence is masked and the model is

trained to predict the original values of these masked words based on the context provided by the

surrounding words.

In simple terms,

1. Masking words: Before BERT learns from sentences, it hides some words (about 15%) and
replaces them with a special symbol, like [MASK].

2. Guessing Hidden Words: BERT's job is to figure out what these hidden words are by looking at
the words around them. It's like a game of guessing where some words are missing, and BERT
tries to fill in the blanks.

3. How BERT learns:

o BERT adds a special layer on top of its learning system to make these guesses. It then checks
how close its guesses are to the actual hidden words.

e It does this by converting its guesses into probabilities, saying, "I think this word is X, and I'm
this much sure about it."

4. Special Attention to Hidden Words

NLP Page 29

https://www.geeksforgeeks.org/named-entity-recognition/
https://www.geeksforgeeks.org/nlp-vs-nlu-vs-nlg/

[Type text] [Type text] [Type text]

e BERT's main focus during training is on getting these hidden words right. It cares less about
predicting the words that are not hidden.
o This is because the real challenge is figuring out the missing parts, and this strategy helps

BERT become really good at understanding the meaning and context of words.

In technical terms,

1.

BERT adds a classification layer on top of the output from the encoder. This layer is crucial for
predicting the masked words.

The output vectors from the classification layer are multiplied by the embedding matrix,
transforming them into the vocabulary dimension. This step helps align the predicted
representations with the vocabulary space.

The probability of each word in the vocabulary is calculated using the SoftMax activation

function. This step generates a probability distribution over the entire vocabulary for each masked
position.

The loss function used during training considers only the prediction of the masked values. The
model is penalized for the deviation between its predictions and the actual values of the masked
words.

The model converges slower than directional models. This is because, during training, BERT is
only concerned with predicting the masked values, ignoring the prediction of the non-masked
words. The increased context awareness achieved through this strategy compensates for the slower

convergence.

2. Next Sentence Prediction (NSP)

BERT predicts if the second sentence is connected to the first. This is done by transforming the output

of the [CLS] token into a 2x1 shaped vector using a classification layer, and then calculating the

probability of whether the second sentence follows the first using SoftMax.

1.

In the training process, BERT learns to understand the relationship between pairs of sentences,

predicting if the second sentence follows the first in the original document.

50% of the input pairs have the second sentence as the subsequent sentence in the original

document, and the other 50% have a randomly chosen sentence.

To help the model distinguish between connected and disconnected sentence pairs. The input is

processed before entering the model:

e A [CLS] token is inserted at the beginning of the first sentence, and a [SEP] token is added at
the end of each sentence.

e A sentence embedding indicating Sentence A or Sentence B is added to each token.

e A positional embedding indicates the position of each token in the sequence.

NLP Page 30

https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/

[Type text] [Type text] [Type text]

4. BERT predicts if the second sentence is connected to the first. This is done by transforming the
output of the [CLS] token into a 2x1 shaped vector using a classification layer, and then
calculating the probability of whether the second sentence follows the first using SoftMax.

During the training of BERT model, the Masked LM and Next Sentence Prediction are trained

together. The model aims to minimize the combined loss function of the Masked LM and Next

Sentence Prediction, leading to a robust language model with enhanced capabilities in understanding

context within sentences and relationships between sentences.

Why to train Masked LM and Next Sentence Prediction together?

Masked LM helps BERT to understand the context within a sentence and Next Sentence

Prediction helps BERT grasp the connection or relationship between pairs of sentences. Hence,
training both the strategies together ensures that BERT learns a broad and comprehensive
understanding of language, capturing both details within sentences and the flow between sentences.
BERT Architecture

The architecture of BERT is a multilayer bidirectional transformer encoder which is quite similar to

the transformer model. A transformer architecture is an encoder-decoder network that uses self-

attention on the encoder side and attention on the decoder side.

1. BERTBASE has 12 layers in the Encoder stack while BERTLARGE has 24 layers in the Encoder
stack. These are more than the Transformer architecture described in the original paper (6 encoder
layers).

2. BERT architectures (BASE and LARGE) also have larger feedforward networks (768 and 1024
hidden units respectively), and more attention heads (12 and 16 respectively) than the Transformer
architecture suggested in the original paper. It contains 512 hidden units and 8 attention heads.

3. BERTBASE contains 110M parameters while BERTLARGE has 340M parameters.

BERT,,_, BERT

large

NLP Page 31

https://www.geeksforgeeks.org/next-sentence-prediction-using-bert/
https://www.geeksforgeeks.org/next-sentence-prediction-using-bert/
https://www.geeksforgeeks.org/self-attention-in-nlp/
https://www.geeksforgeeks.org/self-attention-in-nlp/

[Type text] [Type text] [Type text]

This model takes the CLS token as input first, then it is followed by a

sequence of words as input. Here CLS is a classification token. It then passes

the input to the above layers. Each layer applies self-attention and passes the
result through a feedforward network after then it hands off to the next
encoder. The model outputs a vector of hidden size (768 for BERT BASE). If
we want to output a classifier from this model we can take the output

corresponding to the CLS token.

[cLs]
Help
Prince

Mayuko

Now, this trained vector can be used to perform a number of tasks such as classification, translation,

etc. For Example, the paper achieves great results just by using a single layer Neural Network on the

BERT model in the classification task.

How to use BERT model in NLP?

BERT can be used for various natural language processing (NLP) tasks such as:
1. Classification Task

e BERT can be used for classification task like sentiment analysis, the goal is to classify the text

into different categories (positive/ negative/ neutral), BERT can be employed by adding a

classification layer on the top of the Transformer output for the [CLS] token.

NLP Page 32

https://www.geeksforgeeks.org/self-attention-in-nlp/
https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/what-is-sentiment-analysis/

[Type text] [Type text] [Type text]

The [CLS] token represents the aggregated information from the entire input sequence. This
pooled representation can then be used as input for a classification layer to make predictions for

the specific task.

(]

. Question Answering

e In question answering tasks, where the model is required to locate and mark the answer within a
given text sequence, BERT can be trained for this purpose.

o BERT is trained for question answering by learning two additional vectors that mark the beginning
and end of the answer. During training, the model is provided with questions and corresponding
passages, and it learns to predict the start and end positions of the answer within the passage.

3. Named Entity Recognition (NER)

e BERT can be utilized for NER, where the goal is to identify and classify entities (e.g., Person,
Organization, Date) in a text sequence.

e A BERT-based NER model is trained by taking the output vector of each token form the
Transformer and feeding it into a classification layer. The layer predicts the named entity label for
each token, indicating the type of entity it represents.

How to Tokenize and Encode Text using BERT?

To tokenize and encode text using BERT, we will be using the 'transformer' library in Python.

Command to install transformers:

!pip install transformers

e We will load the pretrained BERT tokenize with a cased vocabulary
using BertTokenizer.from_pretrained("bert-base-cased").

e tokenizer.encode(text) tokenizes the input text and converts it into a sequence of token IDs.

o print(""Token IDs:", encoding) prints the token IDs obtained after encoding.

e tokenizer.convert _ids to tokens(encoding) converts the token IDs back to their corresponding

tokens.

o print("Tokens:", tokens) prints the tokens obtained after converting the token IDs

from transformers import BertTokenizer

Load pre-trained BERT tokenizer

tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

Input text

NLP Page 33

[Type text] [Type text] [Type text]

text = 'ChatGPT is a language model developed by OpenAl, based on the GPT (Generative Pre-trained

Transformer) architecture. '

Tokenize and encode the text

encoding = tokenizer.encode(text)

Print the token IDs

print("Token IDs:", encoding)

Convert token IDs back to tokens

tokens = tokenizer.convert_ids_to_tokens(encoding)

Print the corresponding tokens

print("Tokens:", tokens)

Output:

Token IDs: [101, 24705, 1204, 17095, 1942, 1110, 170, 1846, 2235, 1872, 1118,

3353, 1592, 2240, 117, 1359, 1113, 1103, 15175, 1942, 113, 9066, 15306, 11689,
118, 3972, 13809, 23763, 114, 4220, 119, 102]

Tokens: [[CLS]', 'Cha’, '##t', '##GP', '##T', 'is’, 'a’, language’, 'model’, 'developed’,
by, 'Open’, ##A', '##l', ',’, 'based’, ‘'on’, 'the', 'GP', '##T', '(', 'Gene', ##rative', 'Pre’,
' ‘trained’, 'Trans', '##former’, ')', ‘architecture’, ", '[SEP]']

The tokenizer.encode method adds the special [CLS] - classification and [SEP] - separator tokens
at the beginning and end of the encoded sequence. In the token IDs section, token id: 101 refers to the

start of the sentence and token id: 102 represents the end of the sentence.

Application of BERT
BERT is used for:
1. Text Representation: BERT is used to generate word embeddings or representation for words in

a sentence.

NLP Page 34

[Type text] [Type text] [Type text]

2. Named Entity Recognition (NER): BERT can be fine-tuned for named entity recognition tasks,
where the goal is to identify entities such as names of people, organizations, locations, etc., in a
given text.

3. Text Classification: BERT is widely used for text classification tasks, including sentiment
analysis, spam detection, and topic categorization. It has demonstrated excellent performance in
understanding and classifying the context of textual data.

4. Question-Answering Systems: BERT has been applied to question-answering systems, where the
model is trained to understand the context of a question and provide relevant answers. This is
particularly useful for tasks like reading comprehension.

5. Machine Translation: BERT's contextual embeddings can be leveraged for improving machine
translation systems. The model captures the nuances of language that are crucial for accurate
translation.

6. Text Summarization: BERT can be used for abstractive text summarization, where the model
generates concise and meaningful summaries of longer texts by understanding the context and
semantics.

7. Conversational Al: BERT is employed in building conversational Al systems, such as chatbots,
virtual assistants, and dialogue systems. Its ability to grasp context makes it effective for
understanding and generating natural language responses.

8. Semantic Similarity: BERT embeddings can be used to measure semantic similarity between
sentences or documents. This is valuable in tasks like duplicate detection, paraphrase

identification, and information retrieval.

NLP Page 35

HEEEEEEERRRRERY

NP UNG T | 0 Jv
| yedicalz ﬁrcgg_ el Sjwucﬂj;m = J
Sha ;

o Se manlic Parxsin L2 Po UCULL Kua
pu =
'bt‘t- \J_D\E_e)lehta\oel" A & 78 3%&%@ XS
.- O P,Mo\.cgh asxauww.u Sudivy . Tn T
Predecale » venh aiuauw\um,uo«e_ /ﬁ‘u’oju&
e “‘ Lo et imea Qf‘?——CQ-(LaL K.V YEUN. -V S

Loum., I3 RS TIVNa) ,Pre(?olem\/u\ wu [Ty Seunlunce -
lecoA = for 2hallow Seuralic —pariing oo
Ow'Lto/\ ol ‘e_bohnmej,u Q)»ej_.] Tan HQO \DD__-
Al t\' QY10 Onwpmm use&md dLQ_.U_QlDJFtLQ —_ﬁ\‘u—l G@@
WieSa Mej‘ CLVL(A @XDDBCU/\\(Tho s F&Kou_hu/xosﬂa

)

0 Q t"\,amuﬁom —f—rh'm rude haye d CQDD@’DCLCQ/\QD’}'O

A'AYm'
o

®: M oxe /&a,&l (Maubu& @LIDK)TD&CL\.Q_A —HAQM QD@(DOLDWA_

}-—‘%@w& QAN /banAi—-p@vmtm]. /Q.LI’L(?QlStLC_ MMQUZ o
,-W Lalles, |oun Judu; 26 M hre smodiiao

]
mmoulo rat l'\ohse auw\mlllu ,,Qaa [t Benpmuls

|

|

|

(f LJL-‘Q/O(m@Q_,LOV\ emwdbdl L Auch resawzcu

,‘ ‘praimer\\d L hee d on _)J..quu 2ewaula

Cohere @ %L\\'Qm P\x;zoh‘mh 2o ked o dewmaudac
I—_‘:{m_mo_g [T L Areuu o oJuw Aome o o\ o] bosmk\o

IM‘C Yo les fodmm%,cm& jro Maat —ﬁ(am N

P’ao}')%amz; i baned an Dowlyl JouTeleg ot

i!“\TCDJ’)H‘,}!' l]vl\\ R eacih DYQ(&JCaLL hows Q Aﬁ“ ®,-\ (ciye

o)gjum,ulﬁ Iat ale ?&ppbtalu Aope,ukcku,&‘ ez,(/\c,q ald
D dieal Qhye @ Rk n/t NOn ~core Waahumb\,uz

Qo - T bafldy o mgﬁc{&h%(} PUAV\"he

a'— Scanned with OKEN Scanner

NLP

Page 36

| —

e d

bl b4 B B Y

S

{rame N ek'- LramaNel ¢ O\MCU v, ._(,Qa W = St ufle
Sepanlbe anne ol oa 0,3 A Nwn ke crl PLeda cod il s
__E_"Ea&-&‘yl'\ - T\ (o Dv\\ o' Al h‘\'n_?) Jo J /0]/\\1_}_}(5}' ey U odrco
—:&:me_ . \CLL e r]‘aﬁ ‘\" g\.\ ’\\ (‘L,\.l_‘ _(.uu,& ng “Ld, (ropd e) ’ '_ern
—procen ot frameNek anmobdiom covisls A rr_ﬁu:@f}'}'v«,

J_’S]?f_‘u;jj:c_,_m_‘/_(x W ¢ ff-,famu awnd. (e al_.'a,,} o A2} 2
Hame gspeckhc voly Called frame elewands -

m o (1Y -@(%LUJ\.Q belous <hoeos Frans Nek o)oa_tm@b,, -

—

\

/o 3

Eromo ' Awarene vh 5“’*?‘()" *

P . In,faz’{'wc v
Coc\a) e Hlann e ’ —

Conliuer Eyprosor | - Coutpretuad v

Evidoune Role \wpw Mg Lo

TOpfc PMWOW\QVB&_\Q__ \(WW\ACMW\ —
Degieo PR co

\ ‘ NOM(ML::'J-A

-C{q,; ‘plfa_r‘me‘}\le’\,— QJQGW\VDLQA

Tl ‘-e\locoum e)LCLmDLQ ULA,&[RAM [T 8@410 iTdua.

Heye 4 Ujid ”f*fmmt Pc\ADfrE.Mt:SS A .LLgé,‘fms-Lt_aLL_Q__
g Vexdo 'P(‘Q decals helleone and L nouwn

drca o C.aAMDrL‘/\Q,LA%{OV\ s 0 B &bL\\Lf" & ~glhawy

ﬁ hEQ?

AMOARENE £ Lrame ouvau\ with, e -&/meg_“._*_

M aned g A a,m(p___AQ od\ Pku{\cmlv\ Aot

auvolwe 16 Ju dw_dma wWahs a@ud ﬁ__nQ..’““leh}_‘SJt&}L

L L%gm_x___mu‘/&] [p&x_dth-vutb be:L‘“U‘J S:¢<ULQLJ._ S

i e &—(Lu an ?«.L\{’\‘Q%\g_m;l

de Nl Adouhly _ex idle d M_J:O ﬁLeqnuu (.90)\] p‘um calz ~hewn

ComipAetaein &lon ‘[_‘..Cﬂdm.d O ,|] S

(} Scanned with OKEN Scanner

frowoNel widudes a oide vawdy @(_ﬂQﬂLml_g__cm.Lm?

age 37

Ol

I

R
e S

/—MCMb \ﬁLa_,Q_,Lov__ca____PﬂcO_o La.ﬁ —_ \C.MW.O. O.lel ’l,:_ £ a NIL
Tt Y& yabeno wiivokas o called a lep! ud onll Q—U)

. ._, R ——]

¢

MLW oA by ma&,qmwﬁo Wt(’ﬁ\iﬂb&t&

Gf-fﬁ',cjm AR N aere b Qﬁﬁw valioms MO_b:_E

{

T Hu_:-u.—f—mc4 bCu_LM 2\ O Weved wit ik W.Ow‘fg‘
“tao (alocX 'N_\e;a?e (& -Pra.uAe.Nd‘ R\'5 _-}

Coantaint alouk 123 poo \Pg,a_d_._gaj.a___.,/.u Atewacsr 4
| Covereng alsmad- &oon _?——‘Lom‘rnﬁ CLLM/ULU.J/._‘JFCO__ —
/—ng/f & Ly 000 r-&-mmm ovy. 0We MBNC - ‘
—

E"Ofp Bank:- T4 only odedo annoldiowm 0!4.___-{
- IR b Dredecali A Ine vt Gi
WaT pPart o T Peaw Thee Pevnk Inauga b{é”_[abcucch
wih Higis /&u/waxd«. a,u;cmw T MOJ)CIS&D-\

G Scanned with OKEN Scanner

$
I

]

;oer(s\mzcj ohee X Cau Lales velieg crLTTﬂP

o~ \CIIOLQUJ’ICLW) OR@WL,LM w it leJse La Q.\ [LJM -
—_— g I

Ina and Ro en
A"-’M concl o m,gum.u,di haye [fn Some

|
e,
meang acfor all pledicalin, “ohere on (6T |

VY)C,O'—VNL—Q o (ot o-k{}u,mx_zw,lﬁ han 1o t:(MET\{){LLCO‘

|
Wi Lonm_d.oog\ Wil a \l:>w;d.,tcalI' ARG A g

Pa0To ~ AGeENT (wsually Ve & wqede e J v SR NWAVY v\u{a\

= q
M v L PROTD — PATENT Cwua&l).j G divcd) heat |

F%T—}Kp. nafive vesds -

Q‘Om_&o \w(.)u:)u) ' mw& a LS¥QI‘ Curre
d s
oL U N -—\&)—QA PR =y {P(‘Q&,L‘caﬂ_ﬂ mm)\,ah and’ cuﬂ\,\.o-,n

- | Podecald [Arguumenl” Dcﬂc/n DL\O\/\ |
OPMI . 0) ARG O 7‘\%«%&} J OPLLe\.‘().ch’__

- ARG | m'fﬁ:om&'elﬂ‘

ARG K Pphuzf' | J\)MAJ: cu-t@L TR

| ARG Ex plect “aX G sl

/ ARG 4 t:‘zﬁpbc,nL i Shumeat

NLP

=p—
Page 38

Frc &icals .,‘(\"J“_"ﬁ“‘“\ et il aa 4 , i
Sjanlior - o)
ot NGO Nulloy mﬁw!'
NG | Tovwl aultior: (J

-4 Tl alioue &Luu tablesy TePs chent” /‘d'; cunaa 't ladelg
[»

e _QUAD (\'o.QE_d’ k)(H-\ O]‘,LA_O.L O\ (Ae s e U vk) avd .F(,/

f’_é_a.u.ﬂlm" 01 C e o ton i or (‘um&'rlld) s M Progpfo

(} Scanned with OKEN Scanner

e

7z
\~
e |
\\ .
T
St |
]
\\
\\: ’_,,-~~——-“-~—— —et Fp v\ "3
\\ _— i e
\\;]I TthLbdDw *ﬁu:w:s (L'ts\ tid a LL.'_L‘!_,L/L(_‘J_{‘FU algynhe 4l
T~ | S PoopR and — ARG M
] [B .
— i | L 0“3:] s DLSuﬁ(phm ! 'w\oﬂmr)h ‘
'\._,/’f j%m —(ocC focaloe |t meLsenrm), A 1u9/f}‘014»t‘/
_/,_f | e MHaws
Sl || — (-ﬂﬁ@m =P | Teunoral _|Dow, b nuck Sumnais
| - ARG M- HM.&___J:{aLnnﬁA/___MMMiL.,TL(f:OJB e ",'[_'i |
L | - ’ A Gm— D] Q Digecleaa | '{'Omaxluj_)__'t'o (’»mﬁku\; rali
\' !ﬁ—ﬂ@m =R L C aude A cupcmL!o |tz rubu]
o) jﬂﬂé,m-DIS Dlacounco D ov uoaw.pla_ [ERUS f’O-\J -l~'m«'~,<
o !—Mﬁm—enT SrM= ak- .{3 38 A_S_fl T, 50 .poml—; |
| ’,—Prf’\&m -PRP P:.q_pﬁys____ j‘O,Pwﬂ r-j-wk,lm \ﬂ.«.uf
ll’ ; HROMm — G Nw‘mhm not
, | pL b —™Mop Hodal_ Cm.w‘,smﬂbd _ghowld ,
:’ -ARGm 06c | Gudprocals | eadaolTia ;
'» Mm —PRD Retomdomd | do e canme a-teadwa
i ! (Prcpbb@ on | _ 1
£ | fM-am Bagy AL | O a Po\ve cacavt |
- L%L(_Un — ADV ACNVITV YT PR
—] I An e\ompln__wﬁx@d?ﬁ,w::\fmm. 0 PAey Bk covpu allony
—— wite 10 jbmw_m\in:e.cm rLPme.Mm omd t\kucuk\s’\d Qakal, |
T~ DA Bnoen m_juju.u.b Jous - |
el

NLP

Page 39

R AR

N
|

|
/ " B @
| __— \\ -
[J ’T‘P .V l‘}
D5 —
Pe_p \ !
} Ver NP [Pe) 4’?
L 4+ opdals /,-.\ :I
ARG Predicale PP |
l V\J\I\)_S ,/\ ;
’ | HAM, W Jowa |
| St soud Nebratks,
"Alﬂi&\‘ ‘A‘LCAM— LOL;_

—Cr\q uniep Foeo

L \hix'_m\[{/\nr W&

G

\—{’m; o eaa\a 1o

A

SYOPRa v LoD
i v = J°

k]l

opaai

;, ak’\ 3 \ a‘tn.

)

S’;“r(LCu oA

) ARG M—L Oc

m&H@ 5 fowx ooAad Ncbrv.skal

Q\‘"S\"\"{\L\FW\ bebhivoin Framo INPE S cv._:-gl P'LDPKCUAI(J o=

i o Crmv\g"[\m«b’

These

il
ot \R Leyeveod) und S ;

| colidh axa 28w woovdA

»F‘(CH’Y\J/) M Thnu

\-LJ:LVD\U \

PGJ&QCQ Wby Aol mcam'«}xw

RT7\ @mb&mw\ m e, —@w eaddn \em\«w_q

Thtde o -Q_ns\ﬂ“ Dd, &EW f’gmw\gula Rak &LPM
all M ESewnger —\J—V\/ whwdn - Meso @ arﬂdc\l‘?—{&w\‘
Q,Qammw Saudiue -

S’ud&u 1= Seuman e ﬁmje lubelliag v a S\..LPQQU\Q,@OQ
Aavificalion poblewmy Paak gvumen (e algeman|r o
a gamch‘mli and tho ’)fa&.ncaﬂl ﬁ’edi Can lgz MmDmrQCJ

a_ nodo an e &H/(Ahnp |7ree -—‘?W UAQL Jenleme e "Tt«zig

|

|

G Scanned with OKEN Scanner

NLP

Page 40

,,/#/___® |

l ol S%(\Lluu s ey e AR A‘?

. ‘A-VCJAWLQJ.,LX__ - M(h LaLOM_thu_A_ __‘}J.u_._mi\—c(k, ‘

;)l _aud mLu M @MAL_MJ‘LM%—————"—{

G P | TR e - ywemM%uw Od—,&r——\

) hfo_(&i\CQQ_ —

’ A ounmanX ~lase lhc:! AR G\\yu&_w&k\uu&~——\

iku,ouovx to &Dfe ¥ cqummudc &A_W&LCQAU————)—MS G }
|G O-BDYDDna.OJ OJ_qroLmu}— WA 4o W

L 3 - 'A-r'qgux.uz,uk Id_wlt_o,h\pa,hom amcuu_&éq.cabm__—_ﬂ
l“rfxbc i & g 0 ovalot waledia o) T previoun MD\"‘*‘L‘L
| ! ruds ol
here e 0ot Cuennd3 O k*L(Do“M Ql_q o,
LG e A rcalz aYYe lCﬁm;L ’ALJ ard M’ @UP(D(DIDOQ_LQ
) o) QQ.GA.MuA X 0 o dsel 19 &L&lsvu_& '@'O Lz
J Ouce Mu feleico A pw.ud uk\\/w\ a

[ntou/\?icpwuru\, L 2o mods o\t POSRL. \farec CMG

6

el _I

l o ke d o edthey one Aol \ﬁe;‘ne&&u)m Se,w\.m,xh‘c
'GD%PMAAQM,‘/‘U- on—nall Y\.O&L\ N ANl Uiak‘ &D@/) L‘—Ot

/_}_&ﬁ,p_wm\— any Aeriaudic Ww fuu o nald wociiir
e hon '\r\uU Nodun Cau b —%\W U_(hhcdz\-\uﬂ \,Lu'\"gg

R ———— = S S ST

[-F-wepamwh s (b alow Vee | *
]J e ™Nown phsae Tk entompell e Atorey maﬁ\'h_Ja !

I

Toume _awnd Nelovrako ¢ a nall'node becaune !

N Amen vor coreapoad e a Gemnoalie G‘Lﬁmvuubm.

Tlo wode RP Wik oncommen Rtogen v o N8u-nul] ?
nod.o beoane. W+ dow @wuw < o &Mc 3

e meeudo odo ‘!W\XIM JEAALIUC SRl |

s

|

|

’ I
’! M.QQ.MJ)C ARG\ -

Ilﬂofe ﬁoﬂorﬂhujJ(SﬂL3 chC«mnH?\m B S\/\nufm |y ——

|
-
|
|
|
|
|

NLP

G Scanned with OKEN Scanner

Page 41

| cwalalole j’—W Senraudic lc___lt‘dat LL\&S S—

-
e Semanbe ol \-“[""““‘“f /__1{\(10“’\”_’ :
Pyace e v SR (Sealeince) e\iong hesrN domowlio
Yole Ada l_;c_\.'uuj .

I e B e S TR S S e I

W\‘l&j& L= C)‘i \f\h\' L \\o A€ ‘} (S A ;
It Qanevale ¢ fu 04 u\on.u el Pecrie o(\ (o At lrase ’{
& eleuds J) all Ll [yo e decalia {
3 {W N \3"““‘“ WD Reieince. A0 i(.
A erlad a2 n{ Jealimes o Coda wods Ir
_ W \vee 90 Lc\.QAVU fo \tw predecals }
D Gty cadh r—J\LaL.um. Veelie usvlag Vo he dudd }
Crealo®d A “lyeu i 1

G Aded \CL L)\OLV) o) 40 v‘u«cx o NA. LA
I I el B bk xtbwuu.tﬁ» a Yb\/l Lock- JO:L\/ -+
RS fu(‘l jw i
1 —]
, l:f,\ e SGWCLLQVL R_Q.Poutw\o\hm _fﬂ <~{th - _},
—|-Reve fein ledon vy Acquided . Popkauk toedt o_rc_aﬂffcg 1
ok ol Losgor. OLV\\AoLr\L o oo D”Bﬁ,f‘g,w’\ Tae houn K '5%
: .-'P\\R_Q.XCL Shudiua | i —fvame N aand PQ-UP@MAL'
Lleser - Phvese S\Waeltina. GI,YGVY\MQ)L L PSGQ N U_______;
|Cewibt Y\cd\.m"t-‘ Cc-.b_cdﬁ)_xcreubw Gramwmar C o d C-\) DLP_ML\UAUJ
1Ty B phyveac Chandaa —
mMgofn»t%—m@/tfvﬁWmf:—" A —
SO‘H'W e L~ fo\\mo\ _GQalist J Sq{ l-m adL Pﬁtl‘\O-;}k./A-_ .

——r————

) ASSERT - At walle 9 Faboslocad) o6 e.D\ALU_LLQ QO le 7“3'3"\ B
- . cenmondic yele Qodrel v TRatned an Ao ,L'L\a(t‘s'h ﬁ'.
Paopouk dola _ ——

!

NLP

G Scanned with OKEN Scanner

S A S
% % 3

-
\

AV VTV

/

@

Cha ne ", J— La.l/\g ua.(g,(

2%\ Piop&o.u_\' — N vl

1—4 2 hadmappsan 1~ /\’\q)xa,LlOm SEMM Pas. o .
 leolchas a —-(Lw Jl\aﬂow _ Semaowdie pars /\O hate ol

d-C- ASCERT ! A suleintio A ASSCAT ~fw P

8 SWIRL - Ao Aemandie 1ole Latse (on hriucd

Heve wum_oh SULXL «d _decpa \v_uJa_-ﬂ;'

|

m&-—-f—*’_

gt e o

W

e
£

|
—
= 7 i

ol semaulic auls &_prLijA O oot C’)\o\]" B A V)———to-’ ‘L

|
}}Cgkn Nalinad lav\qu_g_g,g wuput and raneterm it ml'o_ﬁzk_?

Lu/\oumbmupu Mpc&ww o a moduna comak on - |

I[—mn\ N | 7Y r#—wm Lot woudd ke move Lk {D’o_ﬂ__w ‘
e coy pre hein mbLo 4o humausr aX = would b (_MPLM_%;

Jo mCLW.LY\.LA ¥

mmm\ Caspflod aud Mmm_mm_g

’\/O.YIOU.& dﬁoeuf—t‘r 6841\\0_5[@ and Bewoautte, fockmdioon o |
mea/eam bOmHeJAvLu a \«uq«e\ lcud bmmwtm [a.J-A-Qu.a-e/ '

Nno K_,ud/\ RLZ\M(\LO\AA a.kL -U..LLD&QA 7.V P 8 U .A—orm

J 7}

|
[[haﬁd_a.o Lél-ug.ua‘g/& nmuh.ka_/. naﬂual) lauouaol reliw

T

o AT /Q.Q,citg]iu.&‘ Jo ch‘sa.mb\‘ﬁltkaﬁ i+ U&l-’; Ci/kt(uo
ngd %&V\M wo fd kU\.OuDlﬂ&QZ ‘H’O(DWCL ﬁ—/\UQnP o);E\\

Chouiqul \17\(9;* houe bseoyn obvdorxd

|
Ita ot gf progrein o ke moL&Q. wuﬂ AD —f—ar \ G

1
l
i
J
l

Jd) __onﬁmm
I/KQL g A\ﬁwu:_n\); aud\ D/LD\thuA/\ J-u&\&f& ol hedag L;
{SC.O-L’JOLSL ‘o aly \&cdu{ dﬁrv\,kw\"—l - Tde B 0?-1 ’RQW\(J
’o\oon Aexvvae Poxcing |, oA OPPM +o Q\!\O&LOCQ

ulte (Dmx&("\q .,U,g.ml' C‘?\N\in Loyl

dengc

r,L,\go\mE.aanlk.O‘\/\ QC’A.M Aeyaudic &olc \,La.laa_,QA\,u; ;

|

T T WA

|

{R@Aounuw = A numby m(f P&mufax\ howe Cn_a,h{(g

rv———_—

G Scanned with OKEN Scanner

NLP

Page 43

AN

LAV VLAV VAN VN

' "@ |

—h
J!Yeme setatalionb ound ArAowiid “thual ausl- Pmmom

ogobmmw\m—}al.m o s ake o e —

- U, Alvy TAavel JMMW Sﬂsﬁ.uk G\T3)
lm\m, e N OmAb_LcD_Q,e;ﬂ Ane q(‘. vy ,_f.éV\ﬁ’__vatquEL‘p

elbort Yo bucld Aylaud Yo hausdormn ndioad

dinoled o pmacheuwo 4o hﬂM"OV"O o i A

Spontane oun))b?—C-QJr\ Lu.*hn o Aab\ncki d \muﬂou(&"’j—-

a o wd (qf&&' \wl«mrw\a&&m e, n-LUA'—("WMeap a

ceprvintalian (ar wiok Comptled iito o SQU query,

d"*z %‘W’Y\A LA‘K_/\

[CS8ow -

/ LT QTS

f
Tl MmeE »

frame PART—OF -DAY:

5
]
[
i

\CLUL%'ULCL—?/L wdo aq Ropt e heutalion thol Could be uked kj’ o
oun_ ©NG amﬂ,h Callcon ~l—n Mmak 2 d&uh_twa_m—"'g—'?‘&,ﬂh

Qn,_szmm\—alxan ORIGT N 9

4

“

= e

-

wlaodh Wed ped b encods oo ailmmedoals fenaudc |

S P]

CLT Y RAlw

DEST -

l CLTY ! deun Fronessto

baATE -

DAY~ 0f ~LoEE K %«-Qtla_af

—

Natured Q;[o.l/Lau.u\,& Representadim

R ..o

:Dlem,e, Aoy me W\Wm‘r‘q -LLLqMLs J('T‘Ovv\ RRA e .

\S"w ‘:rcw\ubkw O %Qcim/,

g A Sampl wa c}ueﬂij\& A Hawa ceproreitedion |

Sy Lo ATOY ’nghum-

e sy

G Scanned with OKEN Scanner

NLP

Page 44

 owW\Nu vy QQ_QEr g

_® L

PV LA LAV LAV A

—%’—é)\[o@~0\/\ o

G Scanned with OKEN Scanner

CeoRQueny ' —
Q

~

)

Lot wed - Oikaled dide (Gl wa atkad f)“‘*”‘““[
'Wh“—t”)" e _hawan gm0 waeliwe \umLchcuLéir
‘Lofj‘\,\ T‘QaJ - me

Ovey m_pcg;;od L
| “ \l |
iéﬁ\\d‘hd CU\Ad alo aumhb{L‘\\\wu—e/k e Hagaeihe
I
**H'\/ e Mo A &o-‘.ﬁ/ﬂq = mlLL,W\ LOm’CL/J ociand
|
| a (}eoarﬁA—P\u‘L Clobhouyl_ m,uu& &eolgdAL] LU‘MU’\LUUJ
S‘DO?‘—\«L&L@M/ nmgﬁbo’n/\.q /QRJJA mcqor Tive | CLL,LJ

Tul cowmmunicaloy Pwﬁuxm _Nowh
| {
j("O e Mmadasrug ; o\idy QBJ\D\[[C{LCQ Qv w4 - —A
, %ﬁ
et L s Q&ILP““A proxubiag G
,__in.g&o\;all e hr&\b—l_ﬂ”’_d rt(numq .
ol dralogl wese
K¢
}
D Comnarl;Gim - CCL)_,)'\¢%AL “HLUD’VI U W VLS Gy
d
i AP\ 600 A o\\DOUJ& \/\OJJQ l:xeM annol'CL.LQ(Q V=11 —L\ ‘—t‘h\c’?’fg
devuaina 0’\‘- 9.4 - Qeﬂas&m "
jr)'houk(r 800 Prwoles Racds Atond la ve laliorral
n(mj\ar elen - Some &a&l\.‘olm Ql,Luzm/) anol

-KLLLU

I

ATIS - oyl ATIS Wsd wawe - U*&J'
(pmmumcalm“ \JJJVO\VQA a m\)ccéj — |Y\L&&L_\N. (,LAOuloa—;
:w\\"'\ Ra c-‘)ﬁ\LUl

Zﬂl\rel w!‘?c(molgm o_l'\cl LILLP\M Euu__g‘
<09\\ec5‘..u3 ™MOY 2 m} o Do’YhO\/) G,.L oy d-Ua*k'l-lfL,._
| el -
(Maoa)O-U\.qxuna(MHSJ:-QC(L fI\JLLT\
Aole bare LK, Q’L&D\.uc, MRYM&L\W\ Awolr oA
Acovewutelooms oo o followy -

|~ What » T captlal 0& 1% stls WK e |ag a<4§:[pulale {4

QAA&UJLLC('} (choﬂ—nlfs 4\ lﬂaix?(P fs\—ul fs) /
‘D{)Dulnaf_am‘[< D\\\\
T G207

9. what are I hojor LT $w kousas)
! ‘/E_JvA‘QU_)OVL/ L7a CNDLJ\WCL)) U(.:! (L) I\UC(\C)S); ,O_CQ.LJ_QJCS)
S fedoid CWM})))

==
[hge 45

B

/ /
/ /

[RD\DOC-U‘[) A G -

% Rnlm@)\.;glv_www woihalive by (U L
i QM&L@L&AL&L C.owmuv\,da_ lhat s ~olbolic 0(“’*;

ar W\ dewwesa . "'Tf\.Q,\g o Sppodal XW rrod. Lﬂkhﬁ""‘-"g(
F[nua: , Colrdh Q&L‘Qb (.E.\Lod,p M adwice rf—rOM (e ':r

, and G helaviowgy A epprened an

/ L —Wem vlen . @\koc,o\v-a % ‘U/_QEO&M-LPLA ro_Pm\wﬂLmﬂ,

}k.-Q.u- t&m CLB-wLa.u\,

® |

[~~~
\Yf W_LM~C\LDQ LLLr\d__ Cuy P_LA | LO\«JA‘\J\ ‘\Q/) lkJ/JO l)CCM ,

{'Tmm\lnﬁ_&_vulb \qupcu\u,L ‘\GPM‘\JA"\ and Tuwlaxh

——

5
:
¢
]

G Scanned with OKEN Scanner

5

|

\/”f
\,’/”—
£
\\f/’- Jf\ Sf W bald & \n ouvyr beom_Q._\:j_ma . dA oud
\,/r \’)\MA 20t ep} d%ﬁ_i‘[w M_& b_j_—L,LL_OUJZL 4

|

s
|]
[I (CEPO'S/ parali iy —ogo @%\BCM LPMU_ —Lp Lpt

oL 4—\ SN fb\-ﬂi-t— Ou.Q\\\

-

1 | Swtlugi, As D"cx 20 alove applicaliowt lm,_.
/ [\‘Y)aCL!'\lV\Dr memmm Qo ke a \CCQL('\LLUK67 a _J.

‘I , PMLO%— Cqu : N A &mnwun - S\:E’_QJ./(-;‘Q Qe n i—

{;’ I[M‘paeiﬁufal&m E

i

[‘:"
i Risle Reged '~ Lome o) [Te Aewaundic ELEENO! 5:\1@5:&“
g ie— \ \ﬁ(|

__L pe.uvomeak W-m Wel | —ff\/ l~olt, \UL_ﬁ?c___iS___L

Q%\M e ALINSA M \WH__M{_&_CL\/_VLLL‘E‘_\BICR v

cohde Aewsaulic grommwear wan hoind c,ﬁ.{\uO do e

|

| Tt

/ (’ Mmuvu ‘calsy DY*O’\“ULAS__LOLVE__R&\L_JXW\.&
| ool
|

A obur» 4o ,O\peed'\ XLCOQ\A_LLLW\ ENDrs . Ow\dﬂ\ct\\«

approach ,

_—
\4_)

-Aeipnauic UPD\M\DJ.AM 0(' o bualiue h muda Mow\L
Cmml.m Jnan (s WAM!L &Mmﬁt-_mkomukh\ M
A0 oasmﬁﬁ L. me anivo ww\&' LN (i R\ YN S

o AcononSsd Pm\/o_Jl Lo bL_Q,_Jaﬂg_f_J?&Lu,_m*

L
£

7

Page 46

v

—

0

s
Y

f

L

WOQ,QC{ -™m™m t'LKQ A.Mdﬁc—_

T e e F

/___Q);_P_&UJM Jl\km&gh W\Q bou.cA l-CaLuu‘qu.M ale f

S P, V2. QM&L?\CQQZ;_X}_U&{\— 2 G be nr\\‘/\ld uUrd)t !r
/,_;L_aaa&ﬂ:_%.pdﬂm —f:rzvv_m&ah Aowow o vaw owﬂ"ﬁfiu.

et =

Cn:xxmlf 2 DirencGH &ewuuu :

=

Pmb\ew& heeovn on ynove. Couu plarg aud more dewaig
M&Qﬁw&fbuk

t\(\l\)') hxfmn 1—cwd T he \)"lH"\&

e by

“_&SI?‘C.C.L(L‘Q-.Q. S ,CU\Q.CLO.'\AE (R)] F [l,\ N PU\/\(0-WL O /')" (,GJ/\, W

/_____L«\ZJ-._é»‘:aﬂL'-l—U‘\l«ou& o ocownty oo ueoranam adicsd x
washu dioown - Ral(vvy o led pPhares and Ao ot o latwd |
Ik ol b;._.‘:&CVL,-(—cvt\ Yecaven Lo w‘m(cu_d . wha da
PR M&A_hth%L_Aa and@ Seatttivdd o M Aviatiuced / ,
/__uMA&L%__aALAOJ;_ necescan ly oow (s orda. thot
0 a ypllaclic parta b

) lmo‘j‘) Y\QL& Kom&%@/‘\- !!P’S’l‘m’dﬁ Lo w_ai‘l‘_m_ﬂ_h

yude - 4
\\;I‘) T’C«.a Wme AN %Dcu\& ci Lq r(QLu red bo o LoM G r“léﬁ_-—‘,«
g Au.alh-r Ner ez sz &wzlop mw\‘ ‘o S}é&h.l.(.u____ —_—~

Jy toid otp hoad o madnbery 4ud Staliwp aa MG |

~—

G Scanned with OKEN Scanner

Aer‘\vd —('-mm houd - anuolalid Aols - mwwu, UJ&LMO

\\'QNL allimnolie O b we A\—C&ASI\.A(_AD nodals|

1l
Acuse ool aronotElnd clalls o aveifalls AL«JLQLLQL
mode \g Couuolk e wdd Yo doal with rmlumu;w\ |

loka 0 poiAD - 4
Dusste e ATIS &Ur&u.afhm Aome dals wed |

v’

houd L&m d »;gw sewoandic wmm_ﬁm%m,

had ——}ow\, 0 CAAA pmou.Ja a0 o SqA\uJ_,L i

,\D A oniie IpTASRE i) Acusa s i ——?fmﬂ— .

K. L‘LJL‘(L@MM r—T\/) ka&kuuﬂ o
~—H--/ T -7

Nuia Auclon Wed o Aupouied \ﬁam{vt.?/, ctpp_ma_cl\;.

Page 47

!

LUV LV AV A NN N NN

/ i

qux_&%__o%@mmmaﬁmm%pt
o _human -\, —dooP (nprealia Q.pm.oad_—l:o_c()wwﬂffﬂfn;

poghllyy dowon. qualily Lo more dlats e
i proved A ep@uinio,

{1
[‘.,
,J’7
I

| Soltuwae) Sowie fule boned Aysluin ez
‘ J
L wAse 2. <k RIBA=€ 3. Clf(L

& Scanned with OKEN Scanner

——
[S —

|
=
|
a
|
H
(
|
|
|
|
|
|
|
|
|
|
|
|
|

NLP

e ey Y

Page 48

Discourse Processing (Unit-5 Part-2)

Definition of Discourse: Discourse is the coherent structure of language above the level of
sentences or clauses. A discourse is a coherent structured group of sentences.

What makes a passage coherent? A practical answer: It has meaningful

connections between its utterances.

Cohesion

Relations between words in two units (sentences, paragraphs) “glue” them together.
Example: Before winter I built a chimney, and shingled the sides of my house... I have thus
a tight shingled and plastered house.

There are Three Main Classes of Features for Discourse Cohesion
* Lexical overlap/lexical chains

* Coreference chains

* Cue words/discourse markers

Discourse Processing:

One of the major problems in NLP is discourse processing — building theories and models of
how utterances stick together to form coherent discourse. Actually, the language always
consists of collocated, structured and coherent groups of sentences rather than isolated and
unrelated sentences like movies. These coherent groups of sentences are referred to as
discourse.

Concept of Coherence

Coherence and discourse structure are interconnected in many ways. Coherence, along with
property of good text, is used to evaluate the output quality of natural language generation
system. The question that arises here is what does it mean for a text to be coherent? Suppose
we collected one sentence from every page of the newspaper, then will it be a discourse? Of-
course, not. It is because these sentences do not exhibit coherence. The coherent discourse must
possess the following properties —

Coherence relation between utterances

The discourse would be coherent if it has meaningful connections between its utterances. This
property is called coherence relation. For example, some sort of explanation must be there to
justify the connection between utterances.

Discourse structure

An important question regarding discourse is what kind of structure the discourse must have.
The answer to this question depends upon the segmentation we applied on discourse. Discourse
segmentations may be defined as determining the types of structures for large discourse. It is
quite difficult to implement discourse segmentation, but it is very important for information
retrieval, text summarization and information extraction kind of applications.

Algorithms for Discourse Segmentation

NLP Page 49

In this section, we will learn about the algorithms for discourse segmentation. The algorithms
are described below —

Unsupervised Discourse Segmentation

The class of unsupervised discourse segmentation is often represented as linear segmentation.
We can understand the task of linear segmentation with the help of an example. In the example,
there is a task of segmenting the text into multi-paragraph units; the units represent the passage
of the original text. These algorithms are dependent on cohesion that may be defined as the use
of certain linguistic devices to tie the textual units together. On the other hand, lexicon cohesion
is the cohesion that is indicated by the relationship between two or more words in two units
like the use of synonyms.

Supervised Discourse Segmentation

The earlier method does not have any hand-labeled segment boundaries. On the other hand,
supervised discourse segmentation needs to have boundary-labeled training data. It is very easy
to acquire the same. In supervised discourse segmentation, discourse marker or cue words play
an important role. Discourse marker or cue word is a word or phrase that functions to signal
discourse structure. These discourse markers are domain-specific.

Text Coherence

Lexical repetition is a way to find the structure in a discourse, but it does not satisfy the
requirement of being coherent discourse. To achieve the coherent discourse, we must focus on
coherence relations in specific. As we know that coherence relation defines the possible
connection between utterances in a discourse. Hebb has proposed such kind of relations as
follows —

We are taking two terms So and S1 to represent the meaning of the two related sentences —

Result

It infers that the state asserted by term So could cause the state asserted by Si1. For example,
two statements show the relationship result: Ram was caught in the fire. His skin burned.

Explanation

It infers that the state asserted by Si could cause the state asserted by So. For example, two
statements show the relationship — Ram fought with Shyam’s friend. He was drunk.

Parallel
It infers p(al,a2,...) from assertion of So and p(b1,b2,...) from assertion Si. Here ai and bi are
similar for all i. For example, two statements are parallel — Ram wanted car. Shyam wanted

money.

Elaboration

NLP Page 50

It infers the same proposition P from both the assertions — So and S1 For example, two
statements show the relation elaboration: Ram was from Chandigarh. Shyam was from Kerala.

Occasion

It happens when a change of state can be inferred from the assertion of So, final state of which
can be inferred from S1 and vice-versa. For example, the two statements show the relation
occasion: Ram picked up the book. He gave it to Shyam.

Building Hierarchical Discourse Structure

The coherence of entire discourse can also be considered by hierarchical structure between
coherence relations. For example, the following passage can be represented as hierarchical
structure —

e S1 — Ram went to the bank to deposit money.

e S2 — He then took a train to Shyam’s cloth shop.

e S3— He wanted to buy some clothes.

e S4— He do not have new clothes for party.

e S5 — He also wanted to talk to Shyam regarding his health

Occasion (e1;ez)

S1(e1) Explanation (ez)
S2 (ez2) Parallel (es;es)
\\
Ss (es)
Explanation (es)
S3 (es) Sa (€4)

Reference Resolution

Interpretation of the sentences from any discourse is another important task and to achieve this
we need to know who or what entity is being talked about. Here, interpretation reference is the
key element. Reference may be defined as the linguistic expression to denote an entity or

NLP Page 51

individual. For example, in the passage, Ram, the manager of ABC bank, saw his friend Shyam
at a shop. He went to meet him, the linguistic expressions like Ram, His, He are reference.

On the same note, reference resolution may be defined as the task of determining what entities
are referred to by which linguistic expression.

Terminology Used in Reference Resolution
We use the following terminologies in reference resolution —

e Referring expression — The natural language expression that is used to perform
reference is called a referring expression. For example, the passage used above is a
referring expression.

o Referent — It is the entity that is referred. For example, in the last given example Ram
is a referent.

e Corefer — When two expressions are used to refer to the same entity, they are called
corefers. For example, Ram and he are corefers.

e Antecedent — The term has the license to use another term. For example, Ram is the
antecedent of the reference he.

e Anaphora & Anaphoric — It may be defined as the reference to an entity that has been
previously introduced into the sentence. And, the referring expression is called
anaphoric.

e Discourse model — The model that contains the representations of the entities that have
been referred to in the discourse and the relationship they are engaged in.

Types of Referring Expressions

Let us now see the different types of referring expressions. The five types of referring
expressions are described below —

Indefinite Noun Phrases

Such kind of reference represents the entities that are new to the hearer into the discourse
context. For example — in the sentence Ram had gone around one day to bring him some food
— some is an indefinite reference.

Definite Noun Phrases

Opposite to above, such kind of reference represents the entities that are not new or identifiable
to the hearer into the discourse context. For example, in the sentence - [used to read The Times
of India — The Times of India is a definite reference.

Pronouns

It is a form of definite reference. For example, Ram laughed as loud as he could. The
word he represents pronoun referring expression.

Demonstratives

NLP Page 52

These demonstrate and behave differently than simple definite pronouns. For example, this and
that are demonstrative pronouns.

Names

It is the simplest type of referring expression. It can be the name of a person, organization and
location also. For example, in the above examples, Ram is the name-refereeing expression.

Reference Resolution Tasks

The two reference resolution tasks are described below.

Coreference Resolution

It is the task of finding referring expressions in a text that refer to the same entity. In simple
words, it is the task of finding corefer expressions. A set of coreferring expressions are called
coreference chain. For example - He, Chief Manager and His - these are referring expressions
in the first passage given as example.

Constraint on Coreference Resolution

In English, the main problem for coreference resolution is the pronoun it. The reason behind
this is that the pronoun it has many uses. For example, it can refer much like he and she. The
pronoun it also refers to the things that do not refer to specific things. For example, It’s raining.
It is really good.

Pronominal Anaphora Resolution

Unlike the coreference resolution, pronominal anaphora resolution may be defined as the task

of finding the antecedent for a single pronoun. For example, the pronoun is his and the task of
pronominal anaphora resolution is to find the word Ram because Ram is the antecedent.

NLP Page 53

	ON
	NATURAL LANGUAGE PROCESSING
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	COURSE OBJECTIVES:
	UNIT –I:
	UNIT–II:
	UNIT-III:
	UNIT–IV:
	UNIT–V:
	REFERENCE BOOKS:
	COURSEOUTCOMES:

	2. Applications of NLP or Use cases of NLP
	2. Machine Translation
	3. Text Extraction
	4. Text Classification
	5. Speech Recognition
	Speech recognition use cases

	6. Chatbot
	7. Email Filter
	8. Search Autocorrect and Autocomplete
	3. Components of NLP
	4. Steps in NLP
	Lexical Analysis:
	Syntax Analysis (Parsing)
	Semantic Analysis
	Discourse Integration
	Pragmatic Analysis
	5. Finding the structure of Words Words and Their Components
	Tokens:
	Lexemes
	Morphemes
	Morphology
	Problems in morphological processing
	Typology
	Morphological Typology
	1. Tokenizing
	Tokenizing by word
	Tokenizing by sentence
	Output
	Note:

	2. Filtering Stop Words
	Python program to eliminate stopwords
	3. Stemming
	Python program for Stemming
	Output
	4. Tagging Parts of Speech

	Python program for Tagging Parts of Speech
	Output:
	POS Tag information

	5. Lemmatizing
	5. Python Program for Lemmatization
	Output:

	6. Chunking
	Python program for chuncking
	Output:
	Tree Representation
	Python program to perform chinking
	Output:
	Output

	Natural Language Processing Unit-II
	Example Grammar:
	Parse Tree:
	Constituency tree vs Dependency tree
	Defining candidate dependency trees for an input sentence
	Syntax:
	2.1 Parsing Natural Language
	2.2 Treebanks: A Data-Driven Approach to Syntax
	Context-Free Grammar (CFG)
	2.3 Representation of Syntactic Structure
	2.3.2 Syntax Analysis Using Phrase Structures Trees
	Parsing Algorithms
	Shift Reduce Parsing
	Hypergraphs and Chart Parsing (CYK Parsing)
	Models for Ambiguity Resolution in Parsing
	Probabilistic context-free grammar

	Discriminative models for Parsing
	Unit-3: N-gram Language Models (Part-I)
	Please turn your homework ...
	all of a sudden I notice three guys standing on the sidewalk
	on guys all I of notice sidewalk three a sudden standing the
	He to reporters introduced main content
	he briefed reporters on the main contents of the statement
	N-Grams
	Maximum Likelihood Estimate:

	Evaluating Language Models
	Perplexity

	Sampling sentences from a language model
	Generalization and Zeros
	Unknown Words

	Smoothing
	Laplace Smoothing
	Add-k smoothing
	Backoff and Interpolation
	Is there any difference between Bag-of-Words (BoW) model and the Continuous Bag-of-Words (CBOW)?
	Architecture of the CBOW model
	Code Implementation of CBOW

	9. Term Frequency - Inverse Document Frequency (TF-IDF)
	UNIT - IV
	Semantic Parsing
	2. Semantic Interpretation
	A Semantic theory should be able to:
	2.1 Structural Ambiguity
	2.2 Word Sense
	2.3 Entity and Event Resolution
	2.4 Predicate Argument Structure
	2.5 Meaning Representation
	3. System Paradigms
	1. System Architectures
	2. Scope:
	3. Coverage
	4. Word Sense
	Resources:
	Systems:
	Rule Based:
	Another dictionary-based algorithm was suggested Yarowsky.

	Supervised:
	Unsupervised:
	What is Word Embedding?
	What is Word2Vec?
	Why we need Word2Vec?

	GloVe Intuition
	Co-Occurrence Count Approaches
	Co-Occurrence Ratios

	GloVe Cost Function
	What is BERT?
	Bidirectional Approach of BERT
	Example: "The bank is situated on the _______ of the river."

	Pre-training and Fine-tuning BERT Model
	Pre-Training on Large Data
	Fine-Tuning on Labeled Data

	How BERT work?
	1. Masked Language Model (MLM)
	2. Next Sentence Prediction (NSP)
	Why to train Masked LM and Next Sentence Prediction together?

	BERT Architecture
	How to use BERT model in NLP?
	1. Classification Task
	2. Question Answering
	3. Named Entity Recognition (NER)

	How to Tokenize and Encode Text using BERT?
	Application of BERT
	Cohesion
	Discourse Processing:
	Concept of Coherence
	Coherence relation between utterances
	Discourse structure
	Algorithms for Discourse Segmentation
	Unsupervised Discourse Segmentation
	Supervised Discourse Segmentation
	Building Hierarchical Discourse Structure
	Reference Resolution
	Types of Referring Expressions
	Coreference Resolution

